
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Alejandro DÍAZ-CARO

Thèse dirigée par Pablo ARRIGHI
et codirigée par Frédéric PROST

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Du typage vectoriel

Thèse soutenue publiquement le 23 Septembre 2011,
devant le jury composé de :

M. Philippe JORRAND
Directeur de Recherche Émérite CNRS, HDR, Président
M. Eduardo BONELLI
Profesor Asociado à l’UNQ et Investigador Adjunto au CONICET, Rapporteur
M. Gilles DOWEK
Directeur de Recherche INRIA, HDR, Rapporteur
M. Thomas EHRHARD
Directeur de Recherche CNRS, HDR, Rapporteur
M. Michele PAGANI
Maître de Conférences à l’Université de Paris Nord, Examinateur
M. Laurent REGNIER
Professeur à l’Université de la Méditerranée, HDR, Examinateur
M. Lionel VAUX
Maître de Conférences à l’Université de la Méditerranée, Examinateur
M. Pablo ARRIGHI
Maître de Conférences à l’Université de Grenoble, HDR, Directeur de thèse

a Nache
mi compañera de ruta

i

Résumé

L’objectif de cette thèse est de développer une théorie de types pour le λ-calcul linéaire-algébrique,
une extension du λ-calcul motivé par l’informatique quantique. Cette extension algébrique comprend
tous les termes du λ-calcul plus leurs combinaisons linéaires, donc si t et r sont des termes, α.t+β.r

est aussi un terme, avec α et β des scalaires pris dans un anneau. L’idée principale et le défi de cette
thèse était d’introduire un système de types où les types, de la même façon que les termes, constituent un
espace vectoriel, permettant la mise en évidence de la structure de la forme normale d’un terme. Cette
thèse présente le système Lineal , ainsi que trois systèmes intermédiaires, également intéressants en eux-
même : Scalar , Additive et λCA, chacun avec leurs preuves de préservation de type et de normalisation
forte.

Abstract

The objective of this thesis is to develop a type theory for the linear-algebraic λ-calculus, an extension
of λ-calculus motivated by quantum computing. This algebraic extension encompasses all the terms
of λ-calculus together with their linear combinations, so if t and r are two terms, so is α.t+β.r, with

α and β being scalars from a given ring. The key idea and challenge of this thesis was to introduce a type
system where the types, in the same way as the terms, form a vectorial space, providing the information
about the structure of the normal form of the terms. This thesis presents the system Lineal , and also
three intermediate systems, however interesting by themselves: Scalar , Additive and λCA, all of them
with their subject reduction and strong normalisation proofs.

ii

iii

Acknowledgements

This thesis would not have been possible without the guidance and help of several individuals, who
in one way or another have contributed and extended their valuable assistance in the preparation and
completion of this study.

First, my utmost gratitude to Pablo Arrighi, my adviser, who trusted me from the beginning. He
encouraged me at every step, not only in scientific matters but also for my integration in France. His
motivation, enthusiasm and foremost, his confidence in me, are what made me always try harder.

I thank Frédéric Prost for sharing the task of co-advising this thesis.
The INS2I-PEPS project QuAND has financed me several times to go abroad and present the result

of these works, for which I want to thank its coordinator Lionel Vaux. This work was also partially
surpported by the ANR-JCJC project CausaQ and the European FP6-STREP project QICS.

I want to thank to Christine Tasson, with whom I have had the pleasure to work. I also thank Barbara
Petit, who has been a source of brilliant ideas, and who has become a very good friend. My thanks also
go to Benoît Valiron and Simon Perdrix, with whom I have had the privilege of working and sharing
experiences; it has been always fruitful to work with them.

I extend my gratitude to my masters student, Pablo Buiras, and his co-adviser, Mauro Jaskelioff, with
whom I have spent hours discussing via skype and email, which enriched me every time.

I am very grateful with Eduardo Bonelli, Gilles Dowek, Laurent Regnier, Lionel Vaux, Michele Pagani,
Philippe Jorrand and Thomas Ehrhard for giving me the honour of evaluating this thesis and for their
useful comments and enlightening discussions.

I am grateful to my fellow labmates, Jonathan Grattage, Renan Fargetton, Simon Perdrix and Mehdi
Mhalla, for the stimulating discussions and for all the fun we have had over the last three years. In
particular, I want to especially thank Jon and his wife Janine for their invaluable friendship, and for all
the proofreading they have done over the past three years; and Simon for all his encouragement, and for
being the first to make me learn French with his infinite patience. I also thank the whole CAPP team
for having received me within the group.

The lack of typos and the improved English in this thesis are due to Barbara, Brian, Endo, Gabriela,
Isolda, Janine, Jon, Rodrigo and Santi. Thanks! On the other hand, the enormous amount of typos and
bad English that are still here, are my fault entirely.

I cannot forget to thank to all the Ñ mailing list, my source of great amusement at a distance.
I want to express a special thanks to my mother, who has always supported me and encouraged me to

follow my dreams. She always instilled me the love for knowledge, from an early age, when she encouraged
me when I participated in the school science club, and bought me every book I asked for to satisfy my
growing curiosity during my childhood.

To my brothers and sisters Félix, Diego, Mariano, Paty, Sol, Belén and Estefy, my brothers and sisters
in law, my nephews and nieces, my uncles and aunts: thanks for always being there, for support me and
for that much love.

Most importantly, I want to thank my wife Nache, who has given me her support, understanding and
love, and was on my side during all the successes and failures over the past three years, and before. It
would not have been possible to finish this thesis without her. To her I dedicate this thesis.

iv

Contents

1 Introduction 1
1.1 A brief and fast introduction to the quantum notation . 3
1.2 The linear-algebraic λ-calculus (λlin) . 4

1.2.1 Some technical remarks about λlin . 5
1.2.2 Encoding quantum computation in λlin . 6

1.3 Plan of the thesis . 7

2 Call-by-name, call-by-base and the reduction/equality duality 9
2.1 Algebraic λ-calculi . 10
2.2 Discussion on consistency and confluence . 11

2.2.1 Local confluence . 11
2.2.2 Simulations and the confluence issue . 13

2.3 Simulations . 14
2.3.1 Algebraic reduction versus algebraic equality . 14
2.3.2 Call-by-name simulates call-by-base . 15
2.3.3 Call-by-base simulates call-by-name . 18
2.3.4 The remaining simulations . 20

2.4 Conclusion and open questions . 20

3 A type system accounting for scalars 21
3.1 The Scalar Type System . 21
3.2 Subject reduction . 23

3.2.1 Preliminary lemmas . 23
3.2.2 Subject reduction proof . 28

3.3 Strong normalisation, simplified reduction rules and confluence 28
3.4 Barycentric λ-calculus . 31
3.5 Conclusion and open questions . 33

4 Introducing sums of types 35
4.1 The Additive Type System for λadd . 36
4.2 Subject reduction . 37
4.3 Logical Interpretation . 39

4.3.1 Structured additive type system . 39
4.3.2 System F with pairs . 41
4.3.3 Translation from Addstruct to System FP . 42
4.3.4 Type equivalence . 45
4.3.5 Interpretation of reduction, strong normalisation and confluence 46

4.4 Conclusions and open questions . 47

5 A vectorial type system 49
5.1 Non-restricted λlin . 50
5.2 The Vectorial Type System . 51

5.2.1 Types . 52
5.2.2 Typing Rules . 53

5.3 Subject Reduction . 53

v

vi CONTENTS

5.3.1 An Ordering Relation on Types . 54
5.3.2 Weak Subject Reduction . 54
5.3.3 Proof of Theorem 5.3.4 . 56

5.4 Confluence and Strong Normalisation . 56
5.5 Expressing Matrices and Vectors . 58
5.6 Conclusions and open questions . 59

6 Extending sums of types to the complete calculus via lower bounds 61
6.1 The calculus λCA . 61
6.2 Subject Reduction with lower-bound . 63
6.3 Confluence and Strong Normalisation . 65
6.4 Abstract Interpretation . 66
6.5 Conclusions and open questions . 67

7 Lineal : a vectorial type system in Church style 69
7.1 The calculus Lineal . 70
7.2 Subject reduction . 74
7.3 Strong normalisation . 75
7.4 Example: the Hadamard gate . 76
7.5 Conclusion . 77

8 Conclusions and future work 79
8.1 Summary . 79
8.2 Future directions . 80

8.2.1 Semantics and Differentiation . 80
8.2.2 A quantum calculus . 81
8.2.3 Logics . 81

Appendices

A Proofs from Chapter 2 87
A.1 Proof of Lemma 2.2.2 . 87
A.2 Proof of Lemma 2.3.5 . 87
A.3 Proof of Lemma 2.3.13 . 88
A.4 Proof of Lemma 2.3.14 . 89
A.5 Proof of Lemma 2.3.15 . 91
A.6 Proof of Lemma 2.3.20 . 92
A.7 Proof of Lemma 2.3.26 . 93
A.8 Proof of Lemma 2.3.27 . 94
A.9 COQ proof of Lemma 2.2.1 . 95

A.9.1 Summary of the proof. 96
A.9.2 λ→lin . 97
A.9.3 λ→alg . 98

B Proofs from Chapter 3 101
B.1 Proof of Lemma 3.2.2 . 101
B.2 Proof of Lemma 3.2.6 . 101
B.3 Proof of Lemma 3.2.8 . 102
B.4 Proof of Lemma 3.2.9 . 102
B.5 Proof of Lemma 3.2.10 . 103
B.6 Proof of Lemma 3.2.11 . 103
B.7 Proof of Lemma 3.2.12 . 103
B.8 Proof of Lemma 3.2.13 . 104
B.9 Proof of Lemma 3.2.15 . 105
B.10 Proof of Lemma 3.2.16 . 105
B.11 Proof of Lemma 3.2.17 . 106
B.12 Proof of Theorem 3.2.1 . 106

CONTENTS vii

B.13 Proof of Lemma 3.3.5 . 108
B.14 Proof of Theorem 3.3.7 . 110
B.15 Proof of Lemma 3.3.10 . 110
B.16 Proof of Corollary 3.3.13(3) . 111
B.17 Proof of Theorem 3.4.3 . 113

C Proofs from Chapter 4 115
C.1 Proof of Lemma 4.2.3 . 115
C.2 Proof of Lemma 4.2.4 . 115
C.3 Proof of Lemma 4.2.5 . 116
C.4 Proof of Lemma 4.2.6 . 116
C.5 Proof of Lemma 4.2.7 . 116
C.6 Proof of Lemma 4.2.8 . 117
C.7 Proof of Theorem 4.2.1 . 117
C.8 Proof of Lemma 4.3.4 . 118
C.9 Proof of Lemma 4.3.12 . 119
C.10 Proof of Theorem 4.3.21 . 119
C.11 Proof of Corollary 4.3.22 . 121

D Proofs from Chapter 5 123
D.1 Proof of Lemma 5.3.2 . 123
D.2 Proof of Lemma 5.3.5 . 123
D.3 Proof of Lemma 5.3.6 . 123
D.4 Proof of Lemma 5.3.7 . 124
D.5 Proof of Lemma 5.3.8 . 124
D.6 Proof of Lemma 5.3.10 . 125
D.7 Proof of Lemma 5.3.11 . 126
D.8 Proof of Lemma 5.3.12 . 127
D.9 Proof of Lemma 5.3.13 . 127
D.10 Proof of Corollary 5.3.14 . 128
D.11 Proof of Lemma 5.3.15 . 128
D.12 Proof of Theorem 5.3.4 . 129
D.13 Proof of Lemma 5.4.1 . 133
D.14 Proof of Corollary 5.4.2 . 135
D.15 Proof of Lemma 5.4.3 . 135

E Proofs from Chapter 6 141
E.1 Proof of Theorem 6.2.2 . 141
E.2 Proof of Lemma 6.3.2 . 142
E.3 Proof of Lemma 6.3.3 . 144
E.4 Proof of Lemma 6.4.1 . 144
E.5 Proof of Theorem 6.4.2 . 145
E.6 Proof of Lemma 6.4.3 . 148

F Proofs from Chapter 7 151
F.1 Proof of Corollary 7.2.3 . 151
F.2 Proof of Theorem 7.2.1 . 151
F.3 Proof of Lemma 7.3.1 . 158
F.4 Proof of Lemma 7.3.2 . 159
F.5 Proof of Lemma 7.3.4 . 160
F.6 Proof of Lemma 7.3.5 . 161
F.7 Proof of Theorem 7.3.6 . 162

G Proofs from Chapter 8 163
G.1 Proof of Theorem 8.2.3 . 163

Bibliography 165

viii CONTENTS

List of Figures

1.1 Syntax and reduction rules of λlin . 5

2.1 The four algebraic λ-calculi . 11
2.2 Relations between the languages . 11
2.3 Rewrite rules of λ→lin and λ→alg . 12

3.1 Types and typing rules of Scalar . 22

4.1 Syntax and reduction rules of λadd . 36
4.2 Types and typing rules of Additive . 37
4.3 System F with pairs . 42
4.4 Translation from Addstruct to System FP . 44

5.1 Syntax and reduction rules of λlin , without restrictions . 50
5.2 Types and typing rules of Vectorial . 52

6.1 Syntax and reduction rules of λCA . 62
6.2 Typing rules of λCA . 63
6.3 The λadd calculus with the Additive type system, in Church-style 67
6.4 Abstract interpretation of λCA into System FP . 68

7.1 Syntax and reduction rules of Lineal . 71
7.2 Typing rules of Lineal . 73

ix

Chapter 1

Introduction

Résumé du Chapitre

Ce chapitre est à la fois une préface décrivant les motivations de cette thèse, et un résumé de
notions préliminaires de base, y compris quelques notions d’informatique quantique avec une
preuve du théorème de non-clonage [Wootters and Zurek, 1982]. Est également présenté ici
le lambda-calcul linéaire algébrique non-typé, λlin [Arrighi and Dowek, 2008], et des exemples
d’encodage de l’informatique quantique dans ce calcul.

The λ-calculus [Church, 1936] is a model for the definition of function. It can be seen as the most
simple and universal programming language: it includes only a definition of variable and a variable
substitution rule. The concept of computability itself can be defined in terms of λ-calculus: a function

is computable if and only if there exists a way to write it in λ-calculus.
A way to characterise programs without executing them is to type them [Church, 1940]: a type

system will statically classify the programs in types, thereby yielding certain information about the
kind of output that the program will produce. Moreover, the Curry-Howard correspondence (see for
example [Sørensen and Urzyczyn, 2006]) establishes a direct relation between the type of a program and
a proof in constructive mathematics. This way, a typed program becomes a proof of a given logical
formulae.

Two algebraic extensions of the λ-calculus arise independently in distinct contexts: the algebraic λ-
calculus (λalg) [Vaux, 2007, 2009] and the linear-algebraic λ-calculus (λlin) [Arrighi and Dowek, 2008].
The former has been introduced in the context of linear logic as a fragment of the differential λ-
calculus [Ehrhard and Regnier, 2003]: the algebraic structure allows to gather in a non deterministic
manner different terms, i.e. each term represents one possible execution. The latter has been introduced
as a candidate λ-calculus for quantum computation: in λlin , a linear combination of terms reflects the
phenomenon of superposition, i.e. the capacity for a quantum system to be in two or more states at the
same time.

These two languages are rather similar: they both merge higher-order computation, be it terminating
or not, in its simplest and most general form (namely the untyped λ-calculus) together with linear algebra
in its simplest and most general form also (the axioms of vector spaces). In fact they can simulate each
other (cf. Chapter 2). Our starting point will be the second one: because its confluence proof allows
arbitrary scalars and because we are interested in the possible applications to quantum computing.

The two languages are also reminiscent of other works in the literature: The functional style of
programming is based on the λ-calculus together with a number of extensions, so as to make everyday
programming more accessible. Hence since the birth of functional programming there has been several
theoretical studies of extensions of the λ-calculus in order to account for basic algebra (see for example
Dougherty’s algebraic extension [Dougherty, 1992] for normalising terms of the λ-calculus) and other basic
programming constructs such as pattern-matching, together with the sometimes non-trivial associated
type theories (see for example Petit’s λ-calculus extension and type system [Petit, 2009] with pattern
matching). Whilst this was not the original motivation behind the algebraic λ-calculi, these languages
could still be viewed as just an extension of the λ-calculus in order to handle operations over vector
spaces, and make everyday programming more accessible upon them. The main difference in approach

1

1. Introduction

is that here the λ-calculus is not seen as a control structure which sits on top of the vector space data
structure, controlling which operations to apply and when. Rather, the λ-calculus terms themselves can
be summed and weighted, hence they actually are the basis of the vector space. . . upon which they can
also act.

The above intertwining of concepts is essential if seeking to represent parallel or probabilistic compu-
tation as it is the computation itself which must be endowed with a vector space structure. The ability
to superpose λ-terms in that sense takes us back to Bouldol’s parallel λ-calculus [Boudol, 1994], and may
also be viewed as taking part of a wave of probabilistic extensions of calculi, e.g. [Bournez and Hoyrup,
2003, Herescu and Palamidessi, 2000, Di Pierro, Hankin, and Wiklicky, 2005].

Hence algebraic λ-calculi can be seen as a platform for various applications, ranging from algebraic
computation, probabilistic computation, quantum computation and resource-aware computation.

In the same way that the theory of vector spaces has many applications, but also many theoretical
refinements that deserve to be studied in their own right, we take the view that the theory of vector spaces
plus λ-calculus has got theoretical refinements that need to be studied in their own right. Moreover, these
theoretical refinements are often necessary in order to address the applications, as is notoriously the case
as instance with the notion of norm. For example if we want to be able to interpret a linear combination
of terms

∑
αi.ti as a probability distribution, we will need to make sure that it has norm one. The same

is true if we want to interpret
∑
αi.ti as quantum superposition, but with a different norm1. Yet the

very definition of a norm is difficult in our context: deciding whether a term terminates is undecidable;
but these terms produce infinities, hence convergence of the norm is undecidable. Related to this precise
topic, Vaux has studied simply typed algebraic λ-calculus, ensuring convergence of the norm [Vaux, 2009].
Quite recently Tasson has studied some model-theoretic properties of the barycentric (

∑
αi = 1) subset

of this simply typed calculus [Tasson, 2009], whereas Ehrhard has proven the convergence of a Taylor
series expansion of algebraic λ-calculus terms, via a System F typing system [Ehrhard, 2010].

Therefore, it can be said that standard type systems provide part of the solution: they ensure the
convergence of (the existence of) the norm of a term. And indeed it is not so hard to define a simple
extension of System F that fits λlin – just by providing the needed rules to type additions, scalar products
and the null vector in some trivial manner (see Definition 3.3.1). However notice that the solution of a
straightforward extension of a standard type system could be both, too restrictive in one sense and too
permissive in another: for example to type a sum we can rely on a typing rule like

Γ ` t :T Γ ` r :T

Γ ` t + r :T

which can be thought of as too restrictive: a sum will have type only when both terms have the same
type. On the other hand, the rule for scaling terms could be

Γ ` t :T

Γ ` α.t :T

which does not provide any way to control the scalar we are multiplying by, making hard to impose any
kind of restriction such as a barycentric relation or a quantum normalisation.

Instead, having a theory where sums and scalar multiplications are reflected in the types, can give the
answer: the term α.t + β.r would have the type α.T + β.R, which provides the details on the vectorial
structure of the term.

In addition, since we provide full-blown proofs of strong normalisation from all the type systems
presented in this thesis, a byproduct of this result is that we are able to remove several conditions that
were limiting the reduction rules of λlin , because their purpose was to keep indefinite form from reducing
(such as t−t, with t not normal and hence potentially infinite). This makes λlin into a simpler language.

Basic definitions and notation
The usual notation regarding rewrite systems is used: given a rewrite system R, R∗ is its reflexive and
transitive closure. That is, tR∗r is valid if r = t or if there exists a rewrite sequence tR t1R · · · R tnR r

1Whereas it is clear already that λlin is a quantum λ-calculus, in the sense that any quantum algorithm can be expressed
in this language (cf. Section 1.2), the converse, alas, is not true, in the sense that some programs in λlin express evolutions
which are not valid quantum algorithms. This is precisely because λlin does not restrict its vectors to be normalised∑
|αi|2 = 1 and its applications to be isometries.

2

1. Introduction

linking t and r. R↔ is the symmetric closure of R, that is, the relation that satisfies tR↔ r if and only
if tR r or rR t.

In some examples, we may use the notation t − r as a shorthand for t + (−1).r, however there will
not be any ambiguity, since − is not a binary operation in any of the calculi developed in this thesis.

A rewrite system R is locally confluent if whenever tRr and tRs there is t′ such that rR∗t′ and sR∗t′.
In comparison, a rewrite system R is confluent if whenever tR∗r and tR∗s there is t such that rR∗t′ and
sR∗t′. Notice that confluence implies local confluence whereas the inverse is not true.

1.1 A brief and fast introduction to the quantum notation
This section does not pretend to introduce a full description of quantum computing, the interested reader
can find actual introductions to this area in many textbooks, e.g. [Nielsen and Chuang, 2000, Jaeger,
2007]. This section only pretends to introduce the basic notations and concepts used in the rest of this
thesis.

In quantum computation, data is encoded on normalised vectors in Hilbert spaces. For our purpose,
this means that the vector spaces are defined over complex numbers and come with a norm and a notion
of orthogonality. The smallest space usually considered is the space of qubits. This space is the two-
dimensional vector space C2, and it comes with a chosen orthonormal basis denoted by {|0〉, |1〉}. A
general quantum bit (or qubit) is a normalised vector α|0〉 + β|1〉, where |α|2 + |β|2 = 1. To denote an
unknown qubit φ it is common to write |φ〉. A two-qubits vector is a normalised vector in C2 ⊗C2, that
is, a normalised vector generated by the orthonormal basis {|00〉, |01〉, |10〉, |11〉}, where |xy〉 stands for
|x〉 ⊗ |y〉. In the same way, a n-qubits vector is a normalised vector in (C2)n (or CN with N = 2n).
Also common is the notation 〈ψ| for the transposed, conjugate of |ψ〉, e.g. if |ψ〉 = [α1, α2, . . . , αn]T , then
〈ψ| = [α∗1, α

∗
2, . . . , α

∗
n] where for any α ∈ C, α∗ denotes its conjugated.

The operators on qubits that are considered in this thesis are the quantum gates, that is, isometric
operators. A isometric operator is a linear function preserving the norm and the orthogonality of vectors.
The adjoint of a given operator U is denoted by U†, and the isometric condition imposes that U†U = Id.
These functions are linear, and so it is enough to describe their action on the base vectors. Another way
to describe these functions would be by matrices, and then the adjoint is just its conjugate transpose. A
set of universal quantum gates is the set cnot, Rπ

4
and had, which can be defined as follows:

The cnot gate. The controlled-not, or cnot, is a two-qubits gate which only changes the second qubit if
the first one is |1〉:

cnot|0x〉 = |0x〉 ; cnot|1x〉 = |1〉 ⊗ not|x〉

where not|0〉 = |1〉 and not|1〉 = |0〉.

The Rπ
4
gate. The Rπ

4
gate is a single-qubit gate that modifies the phase of the qubit:

Rπ
4
|0〉 = |0〉 ; Rπ

4
|1〉 = ei

π
4 |1〉

where π
4 is the phase shift.

The had gate. The Hadamard gate, or had, is a single-qubit gate which produces a basis change:

had|0〉 = 1√
2
|0〉+ 1√

2
|1〉 ; had|1〉 = 1√

2
|0〉 − 1√

2
|1〉

To make these gates act in higher-dimension qubits, they can be put together with the bilinear symbol
⊗. For example, to make the Hadamard gate act only in the first qubit of a two-qubits register, it can
be taken to had⊗ Id, and to apply a Hadamard gate to both qubits, just had⊗ had.

An important restriction, which has to be taken into account if a calculus pretends to encode quantum
computing, is the so called no-cloning theorem [Wootters and Zurek, 1982]:

Theorem 1.1.1 (No cloning). There is no linear operator such that, given any qubit |φ〉 ∈ CN , it can
clone it. That is, it does not exists any isometric operator U and fixed |ψ〉 ∈ CN such that U |ψφ〉 = |φφ〉.

3

1. Introduction

Proof. Assume there exists such an operator U , so given any |ϕ〉, |φ〉 one has U |ψϕ〉 = |ϕϕ〉 and also
U |ψφ〉 = |φφ〉. Then

〈Uϕψ|Uψφ〉 = 〈ϕϕ|φφ〉 (1.1)

where 〈Uϕψ| is the conjugate transpose of U |ψϕ〉. However, notice that the left side of equation 1.1 can
be rewritten as 〈ϕψ|U†U |ψφ〉 = 〈ϕψ|ψφ〉 = 〈ϕ|φ〉.

On the other hand, the right side of equation 1.1 can be rewritten as 〈ϕ|φ〉〈ϕ|φ〉 = 〈ϕ|φ〉2.
So 〈ϕ|φ〉 = 〈ϕ|φ〉2, which implies either 〈ϕ|φ〉 = 0 or 〈ϕ|φ〉 = 1, none of which can be true in the

general case, since |ϕ〉 and |φ〉 were picked as random qubits. �

The implication of this theorem in the design choices of a calculus is that it must be forbidden to
allow functions duplicating arbitrary arguments. However notice that this does not forbids cloning some
specific qubit states. Indeed for example the |0〉 and |1〉 qubits can be cloned without much effort by
using the cnot gate: cnot|00〉 = |00〉 and cnot|10〉 = |11〉. In this sense, the imposed restriction is not a
‘resources aware’ restriction à la linear logic [Girard, 1987]. It is a restriction that forbids us to create a
‘universal cloning machine’, but still allows us to clone any given known term.

1.2 The linear-algebraic λ-calculus (λlin)

In this section we present the untyped linear-algebraic λ-calculus (λlin) [Arrighi and Dowek, 2008]. As a
language of terms, λlin is just λ-calculus together with the possibility to make arbitrary linear combina-
tions of terms (α.t + β.r). In terms of operational semantics, λlin merges higher-order computation, be
it terminating or not, in its simplest and most general form (the β-reduction of the untyped λ-calculus)
together with linear algebra in its simplest and most general form also (the oriented axioms of vector
spaces). However it is not a straightforward step to merge these two families of reduction rules.

To illustrate the kind of decisions that has to be taken, consider the term (λx.(x) x) (α.t + β.u)
which may be thought of as reducing to (α.t + β.u) (α.t + β.u) if it is chosen to β-reduce it first, or
to α.((t) t) + β.((u) u) if it chosen to first distribute the application and then do the β-reduction. The
first option is a call-by-name strategy while the second can be seen as call-by-base, defining the variables
and abstractions to be the base terms. Notice that the call-by-base strategy is compatible with the
view that application should be bilinear (cf. Application rules, below). Leaving both options open would
break confluence, the second option was chosen, which entails restricting the β-reduction to terms not
containing sums or scalars in head position (cf. Beta reduction rule, below).

The call-by-base strategy is also compatible with the no-cloning theorem (cf. Theorem 1.1.1): assume
that t and u are two “base terms” encoding |0〉 and |1〉 respectivelly, and let C = λx.(x) x be a valid
abstraction (depending on the encoding of |0〉/|1〉 we will need different encoding for this abstraction,
but for the sake of the example, assume this is an abstraction that just concatenates twice its argument).
Then with a call-by-name strategy, the term (C) (α.t + β.u)→∗ (α.t + β.u)(α.t + β.u) which is clearly
a cloning of the argument. Instead, in a call-by-base setting the same term leads to α.(t) t + β.(u) u,
which is not forbidden by Theorem 1.1.1.

Instead of introducing vector spaces via an oriented version of their axioms (e.g. α.u+β.u→ (α+β).u),
one could have decided to perform the β-reduction ‘modulo equality in the theory of vector spaces’
(e.g. α.u+ β.u = (α+ β).u). But there is also a good reason not to do that: it is possible to define fixed
point operators

Y = λy.(λx.(y + (x) x)) λx.(y + (x) x)

and a term b such that (Y) b reduces to b + (Y) b and so on. Modulo equality over vector spaces, the
theory would be inconsistent, as the term (Y) b− (Y) b would then be equal to 0, but would also reduce
to b + (Y) b − (Y) b and hence also be equal to b. Instead, this problem can be fixed by restricting
rules such as α.u+ β.u→ (α+ β).u to terms that cannot reduce forever (cf. Factorisation rules, below),
matching the old intuition that indefinite forms ‘∞−∞’ must be left alone. Moreover, oriented axioms of
vector spaces define vector spaces, and no more than vector spaces, just as well as the original axioms do,
as was shown in [Arrighi and Dowek, 2008]. Plus the orientation serves a purpose: it presents the vector
in its canonical form. A more in-depth discussion about these decisions: call-by-name vs. call-by-base
and reduction vs. equalities, is delayed to Chapter 2, where the four possibilities are analysed and the
simulations between them are proved.

4

1. Introduction

The untyped λlin calculus, as defined in [Arrighi and Dowek, 2008], is presented in Fig. 1.1. Terms
contain a subclass of base terms, that are the only ones that can be substituted for a variable in a β-
reduction step. Terms are considered modulo associativity and commutativity of operator + (that is an
AC-rewrite system [Jouannaud and Kirchner, 1986]; cf. Chapter 2 for a full discussion about it). Scalars
(notation: α, β, γ, . . .) are members of a commutative ring (S,+,×). The confluence of this calculus has
been formally proven in [Arrighi and Dowek, 2008]. The proof relies on the restrictions on the reduction
rules. However since these restrictions are not longer needed when working with the stronger normalising
subset of the calculus, they will not remain in any of the typed versions (cf. the confluence proofs in any
of the typed versions in the following chapters). So this confluence proof is not developed here and is
rather delayed to the typed versions.

The set of free variables of a term (notation: FV (t)) is defined as expected. The operation of substi-
tution on terms (notation: t[b/x]) is defined as usual (i.e. taking care of renaming bound variables when
needed in order to prevent variable capture), with (α.t + β.u)[b/x] = α.(t[b/x]) + β.(u[b/x]). Also, the
notation (t) ~r = (((t) r1) . . .) rn is used when needed.

Terms: t, r,u ::= b | (t) r | 0 | α.t | t + r
Base terms: b ::= x | λx.t

Elementary rules:
t + 0→ t,
0.t→ 0,
1.t→ t,
α.0→ 0,
α.(β.t)→ (α× β).t,
α.(t + r)→ α.t + α.r.

Factorisation rules:
α.t + β.t→ (α+ β).t (*),
α.t + t→ (α+ 1).t (*),
t + t→ (1 + 1).t (*).

Beta reduction:
(λx.t) b→ t[b/x] (***).

Application rules:
(t + r) u→ (t) u + (r) u (**),
(u) (t+ r)→ (u) t+ (u) r (**),
(α.t) r→ α.(t) r (*),
(r) (α.t)→ α.(r) t (*),
(0) t→ 0,
(t) 0→ 0.

Contextual rules: If t→ r, then for any term u, scalar α and variable x,
(t) u→ (r) u, t + u→ r + u, α.t→ α.r and
(u) t→ (u) r, u + t→ u + r, λx.t→ λx.r.

where + is an associative-commutative (AC) symbol, α, β ∈ S, with (S,+,×) a commutative ring and
(*) these rules apply only if t is a closed normal term.
(**) these rules apply only if t + r is a closed normal term.
(***) the rule apply only when b is a base term.
Restriction (***) is the one that limits the β-reduction, whereas restrictions (*) and (**) are those that
avoid confluence problems related to infinities and indefinite forms, as discussed above.

Figure 1.1: Syntax and reduction rules of λlin

1.2.1 Some technical remarks about λlin
In this section we provide some technical details that will be needed further. They are introduced here
since we are introducing λlin , even though they do not form part of the introductory discourse to the
thesis.

A call-by-base calculus. In the classical λ-calculus the call-by-value strategy can be defined by: Only
the outermost redexes are reduced: a redex is reduced only when its right hand side has reduced to a
value (variable or lambda abstraction). Notice that in λlin , the set of variables and lambda abstractions
is exactly the set of base terms, in fact values are naturally extended to be base terms and their linear
combinations. So, it is not precise to say that this calculus is call-by-value, instead it can be called
call-by-base.

The ring of scalars. In the original definition of λlin , the ring of scalars was defined using a term
grammar and a rewrite system [Arrighi and Dowek, 2008, Section III – Definition 1]. For the purpose of
this thesis it is sufficient to think of them as members of a ring.

5

1. Introduction

Form of closed normal forms. As first stated in [Arrighi and Dowek, 2008, Proposition 2], closed
normal forms are linear combinations of λ-abstractions. We reproduce the propositions and their proofs
here for completeness. The first one is an auxiliary lemma [Arrighi and Dowek, 2008, Proposition 1]:

Lemma 1.2.1. A closed normal form that is neither a sum, nor a product by scalar, or the term 0, is
an abstraction.

Proof. By induction over term structure. Let t be a closed normal term that is not a sum, a product by a
scalar, or the term 0. The term t is not a variable because it is closed, hence it is either an abstraction in
which case we are done, or an application. In this case it has the form (((u) r1) . . .) rn where u, r1, . . . rn
are normal and closed and n is different from 0. Neither u nor r1 is a sum, a product by a scalar, or the
term 0 since the term being normal we then could apply application rules. Thus by induction hypothesis
both terms are abstractions. Hence the term is not normal because of the β-reduction. �

Now the proposition states as follows:

Proposition 1.2.2 (Form of closed normal forms [Arrighi and Dowek, 2008]). A closed normal form in
λlin is either the null vector or of the form

∑
i αi.λx.ti +

∑
i λx.ui.

Proof. If the term is not the term 0, it can be written as a sum of terms that are neither 0 nor sums. We
partition these terms in order to group those which are weighted by a scalar and those which are not.
Hence we obtain a term of the form

∑
i αi.t

′
i +

∑
i u
′
i where the terms u′i are neither 0, nor sums, nor

weighted by a scalar. Hence by Lemma 1.2.1 they are abstractions. Because the whole term is normal the
terms t′i are themselves neither 0, nor sums, nor weighted by a scalar since we could apply the Elementary
rules. Hence 1.2.1 also applies. �

From this proposition, we can define an infinite vectorial space of normal terms, over the ring of
scalars, as the span of the base formed by all the variables and abstractions in normal form.

1.2.2 Encoding quantum computation in λlin

In this section it is shown how to encode the qubits and the set of universal quantum gates (cf. Section 1.1).
Since λlin allows linear combinations of terms, it suffices to encode the basis of the vector space of qubits.
For a single-qubit it will be used the terms false and true for |0〉 and |1〉 respectively, with its usual
encoding in λ-calculus: true = λx.λy.x and false = λx.λy.y. A classical example of use of this encoding
is the following:

not = λx.((x) false) true

Notice that this term globally expresses a isometric operator, even if some subterms are non isometries.
To encode the Hadamard gate, the first naive choice would be

hadnaive = λx.((x) (
1√
2
.false− 1√

2
.true)) (

1√
2
.false +

1√
2
.true)

However notice that this does not work. Indeed

(hadnaive) false→∗ ((false) (
1√
2
.false− 1√

2
.true)) (

1√
2
.false +

1√
2
.true)

→∗ 1

2
.((false) false) false +

1

2
.((false) false) true− 1

2
.((false) true) false− 1

2
.((false) true) true

→∗ 1

2
.false +

1

2
.true− 1

2
.false− 1

2
.true→∗ 0

where →∗ represents zero or more reductions by the relation →.
The problem is that the linearity of λlin makes not possible to use the classical if-then-else construction

of λ-calculus, that is the true and false encoding. Instead, the linearity must be prevented in the cases
when true and false are used as deciders. To this end, their arguments can be enclosed under a lambda
to make it act actually as an argument in this call-by-base strategy, and then released by applying it to
any base term when needed: for example, instead of having (λx.λy.x) (α.true + β.false) it can be done
(λx.λy.(x) z) λw.(α.true + β.false) which will avoid the linearity. Since the names of the variables z

6

1. Introduction

and w are not important (they are never used), the following notation is introduced: [t] = λw.t, called
the ‘canon’ of t, and {t} = (t) z, called the ‘cocanon’ of t, where w and z are fresh variables.

So the Hadamard gate is encoded as:

had = λx.{((x) [
1√
2
.false− 1√

2
.true]) [

1√
2
.false +

1√
2
.true]}

Then (had) false→∗ 1√
2
.false + 1√

2
.true and (had) true→∗ 1√

2
.false− 1√

2
.true, as expected.

Analogously, the Rθ gate can be encoded as Rθ = λx.{((x) [eiθ.true]) [false]}. Notice that the canon
in the false branch is also needed to match the outer cocanon.

Two-qubits encoding. Since λlin application is bilinear, the usual encoding for tuples can serve as an
encoding for the bilinear operation ⊗:

⊗ = λx.λy.λf.((f) x) y

To put gates together it can be used
⊗

= λf.λg.λx.((⊗) ((f) ((true) x))) ((g) ((false) x)). To make
the terms more readable it is used the infix notation: ((⊗) t) r = t⊗ r and ((

⊗
) had) had = had

⊗
had.

With this definitions, the cnot gate can be encoded as follows:

cnot = λx.((true) x)⊗ ((((true) x) ((not) ((false) x))) ((false) x))

This way to encode quantum computing in λlin suggest that it can be used for quantum computing,
since any quantum algorithm can be expressed on it. However notice that fixing this encoding, not every
term in the calculus will represent a quantum program. Just by restricting the calculus it would be
allowed to consider it as a quantum λ-calculus. Hence our motivations to study the norm of lineal terms.

1.3 Plan of the thesis
Chapter 2: In this chapter the design choices of λlin are fully studied and compared with those of the

algebraic λ-calculus (λalg) [Vaux, 2009], a fragment and extension of the realms of differential λ-
calculus [Ehrhard and Regnier, 2003]. Both calculi are algebraic: they have an additive structure
and a scalar multiplication, and their set of term is closed under linear combinations. However,
they have been constructed using different approaches: λalg is a call-by-name language while λlin
is call-by-base; the first considers algebraic equalities while the second considers rewriting rules.
We study how these different approaches relate to each another. To this end, we propose four
canonical languages, each based on one of the options: the call-by-name versus call-by basis, equality
versus algebraic rewriting. We show that these different languages simulate each other.
This chapter had led to the following papers: [Díaz-Caro, Perdrix, Tasson, and Valiron, 2010, 2011].

Chapter 3: Here we introduce Scalar , an extension of System F which allows to keep track of the scalars
in the terms. If t and u have type T , then α.t+β.u has type (α+β).T . The type system has some
direct applications, such as the ability to determine when a given term will reduce to a barycentric
(
∑
i αi = 1) distribution of terms. We show that this type system has both the subject reduction

and the strong normalisation properties, which are the main technical results of this chapter. The
strong normalisation entails a significant simplification of λlin , removing the need for the restrictions
in the reduction rules, as discussed in Section 1.2.
This chapter had led to the following papers: [Arrighi and Díaz-Caro, 2011a,b].

Chapter 4: In this chapter λadd is defined: the confluent, additive fragment of λlin , typed with the
Additive type system, which includes sums of types as a reflection of those in the terms. After
proving subject reduction for this system, we study the role of sums within the calculus by inter-
preting λadd into System F with pairs. It is shown that this calculus can be interpreted as System
F with an associative and commutative pair constructor, which is distributive under application.
This translation leads to the strong normalisation proof for this system, which will set the base for
proving this property in the system of Chapter 6.
This chapter had led to the following paper: [Díaz-Caro and Petit, 2010].

7

1. Introduction

Chapter 5: In this chapter the first fully Vectorial type system is defined. We combine the approaches
of Chapters 3 and 4 with the aim of statically describe the linear combinations of terms resulting
from the reduction of terms. This gives rise to an original type theory where types, in the same way
as terms, can be superposed into linear combinations. Some applications to quantum computing are
shown and we discuss the strengths and weaknesses of it. In particular, we show that only a weak
version of the subject reduction property can be proved in this Curry style version, suggesting that
we ought to move to Church style in order to have the full property, which we do in the following
chapters. We also provide an original proof of strong normalisation, which will serve as a base to
prove this property for the system of Chapter 7.

This chapter had led to the following paper: [Arrighi, Díaz-Caro, and Valiron, 2011b].

Chapter 6: Before moving to a Church version of Vectorial , as suggested in Chapter 5, we explore an
alternative, simpler path: an extension of Additive for the full calculus. This extension has the
advantage of having sums in the types but no scalars, which allows, as shown in Chapter 4, an
encoding in System F with pairs. The system defined is called λCA, and is an explicitly typed
version of λlin , which deals with the interaction between scalars and additions by approximating
the scalars to natural numbers. This system is similar to Vectorial . The main differences are, first
that this is in Church style, avoiding the problems mentioned in Chapter 5, and second that despite
the fact that this provides strong normalisation, and so is a good alternative to have a simplified
language, its types only provide an approximation of the vectors. Instead of any ring it takes the
semi-ring of non-negative real numbers.

This chapter had led to the following paper: [Buiras, Díaz-Caro, and Jaskelioff, 2011].

Chapter 7: We define Lineal , an explicitly typed algebraic λ-calculus based on λlin and Vectorial , with
the subject reduction and strong normalisation properties. This language allows arbitrary linear
combination of terms. The type system is a static analysis tool to describe the vectorial shape of
the normal form of the terms. It keeps track of the “amplitude of a term”, i.e. if t and r are term
of the same type T , α.t + β.r have type (α+ β).T . Also, it keep track of the “direction of a term”,
i.e. if t and r have types T and R respectively, α.t+β.r has type α.T +β.R. This calculus is able to
encode matrices and vectors, just as Vectorial , but with the advantage of having subject reduction:
all the problems described in Chapter 5 are solved by using explicit types, and a subtyping system.

A paper based on this chapter is under preparation.

Chapter 8: In this chapter we briefly summarise the achievements and show some clues for future work.

8

Chapter 2

Call-by-name, call-by-base and the
reduction/equality duality

Résumé du Chapitre

Nous examinons la relation entre le λ-calcul algébrique, un fragment du λ-calcul différentiel,
et λlin . Les deux calculs sont algébriques : chacun est équipé d’une structure additive et d’une
structure de multiplication par un scalaire, et leur ensemble de termes est clos par combi-
naisons linéaires. Toutefois, les deux langages ont été construits en utilisant des approches
différentes : le premier est un langage en appel-par-nom tandis que le second est en appel-
par-base; le premier considère des égalités algébriques alors que le second considère des règles
de réécriture.
Nous étudions comment les différentes approches se rapportent l’une de l’autre. À cette fin,
nous proposons quatre langages canoniques chacun basés sur un des choix possibles : l’appel
par nom par rapport à l’appel par base, l’égalité algébrique versus réécriture. Nous montrons
que les différentes langages se simulent entre eux.

We analyse the different decision choices that make λlin (cf. Section 1.2) different from the
algebraic λ-calculus, λalg [Vaux, 2009]. The latter is another algebraic extension to the λ-calculus
introduced independently in the context of linear logic as a fragment of the differential λ-calculus

[Ehrhard and Regnier, 2003]: the algebraic structure allows to gather in a non deterministic manner
different terms, i.e. each term represent one possible execution.

This chapter is devoted to analysing how these different approaches relate one to the other. To this
end, we propose four canonical languages based on each of the possible choices: call-by-name versus
call-by-base, algebraic equality versus algebraic rewriting. We show that the various languages simulate
one another.

Four languages with different behaviours. In both languages, functions which are linear combina-
tions of terms are interpreted pointwise: (α.t + β.r) x = α.(t) x + β.(r) x, where “.” denotes the scalar
multiplication. The two languages differ on the treatment of the arguments. In λlin , the evolution is
call-by-base (cf. Section 1.2.1) and in order to deal with the algebraic structure, any function is considered
as a linear map: (t) (α.x + β.y) →∗ α.(t) x + β.(t) y, reflecting the fact that any quantum evolution is
a linear map. In the opposite, λalg has a call-by-name evolution: (λx.t) r→ t[r/x], without any restric-
tion on r. As a consequence, the evolutions are different as illustrated by the following example. In λlin ,
(λx.(x) x) (α.y+β.z)→∗ α.(y) y+β.(z) z while in λalg , (λx (x) x) (α.y+β.z)→ (α.y+β.z) (α.y+β.z) =
α2.(y) y + (α× β).(y) z + (β × α).(z) y + β2.(z) z.

Because they were designed for different purposes, another difference appears between the two lan-
guages: the way the algebraic part of the calculus is treated. In λlin , the algebraic structure is captured
with a rewrite system, whereas in λalg terms are considered up to algebraic equivalence.

The two choices – call-by-base versus call-by-name, algebraic equality versus algebraic reduction –
allow one to construct four possible calculi. We name them in Figure 2.1, where they are presented
according to their evolution policy and the way they take care of the algebraic part of the language.

9

2. Call-by-name, call-by-base and the reduction/equality duality

Besides, we slightly modify the operational semantics. The unique modification to λalg consists in
avoiding reduction under λ, so that for any t, λx.t is in normal form. As a consequence, the λ-abstraction
is not linear anymore: λx.(α.t + β.r) 6= α.λx.t + β.λx.r. In λlin , we change the original restrictions,
which where there for confluence reasons, to make it more coherent with a call-by-base evaluation. The
restriction in λalg is a common restriction: reducing under λ could be considered as “optimising the
program. Concerning λlin , waving the restrictions make sense when confluence can be ensured by other
means, as will be the case in the following chapters.

Contribution of this chapter: relation between the four languages through simulation. Al-
though these languages behave differently, we show in this chapter that they simulate each other. This
result reveals strong connections between two distinct research areas and unifies the works done in λlin
with those done in λalg , e.g. [Vaux, 2007, Ehrhard and Regnier, 2003, Ehrhard, 2003, 2005, Tasson, 2009,
Pagani and Tranquilli, 2009, Ehrhard, 2010, Pagani and Rocca, 2010].

We show that call-by-name algebraic λ-calculi simulate call-by-base ones and vice-versa by extending
the continuation passing style (CPS) [Plotkin, 1975] to the algebraic case. We also provide simulations
between algebraic equality and algebraic reduction in both directions. The simulations proved are summed
up in Figure 2.2. The solid arrows stand for theorems that do not require confluence in their hypothesis
whereas the dashed arrows stand for theorems that do.

Consistency. Without restrictions on the set of terms, both algebraic reductions and algebraic equal-
ities cause problems of consistency, albeit differently.

Taking up again the example of Section 1.2, let Yb = (λx.(b + (x) x)) λx.(b + (x) x). In a system
with algebraic reduction, the term Yb − Yb reduces to 0, but also reduces to b + Yb − Yb and hence to
b, breaking confluence. To solve this issue, several distinct techniques can be used to make an algebraic
calculus confluent. The original technique in [Arrighi and Dowek, 2008], as presented in Section 1.2, were
the restrictions (*) and (**) depicted in Figure 1.1. In the following chapters, type systems are set up
which forbid diverging terms such as Yb, and so there is no need for these restrictions.

In a system with algebraic equalities, for any term c, any term b reduces to b+Yc−b−Yc−b, therefore
to c. In λalg a restriction to positive scalars, thus a semi-ring without additive inverse instead of a ring,
is proposed to solve the problem. However such a solution does not work in a system with algebraic
reduction (cf. Section 2.2).

In this chapter we do not make a choice a priori; instead we show that the simulations between the
four calculi are correct, providing a general enough methodology to work in a large variety of restrictions
on the language. Therefore, we do not force one specific method to make the calculi consistent, leaving
the choice to the user.

Plan of the chapter. In Section 2.1, we define the set of terms and the rewrite systems we consider
in this chapter. In Section 2.2, we discuss the confluence of the algebraic rewrite systems. Section 2.3 is
concerned with the actual simulations. In Section 2.3.1 we consider the correspondence between algebraic
reduction and algebraic equality whereas in Section 2.3.2 and 2.3.3 we consider the distinction call-by-
name versus call-by-base. In Section 2.3.4, we show how the simulations can compose to obtain the
correspondence between any two of the four languages. In Section 2.4 we conclude by providing some
paths of open problems for future work.

2.1 Algebraic λ-calculi
The languages λlin and λalg share the same syntax, defined as follows:

t, r, s ::= b | (t) r | α.t | t + r (terms),
u,v,w ::= 0 | b | α.v | v + w (values),

b ::= x | λx.t (base terms).

where α ranges over a ring
(S,+,×), called the ring
of scalars.

We provide a complete formalisation of the rewrite rules and show how they relate to each other. We
summarise in Figure 2.3 all the rewrite rules that are being used. They are grouped with respect to their
intuitive meaning1.

1In [Arrighi and Dowek, 2008], the rule α.(β.t) → (α × β).t is included in the Elementary group (cf. Figure 1.1).

10

2. Call-by-name, call-by-base and the reduction/equality duality

call-by-name call-by-base

algebraic
λ→alg λ→linreduction

algebraic
λ=
alg λ=

linequality

cf. Definition 2.1.1

Figure 2.1: The four algebraic λ-calculi

λ→alg

Th. 2.3.1

��

Th. 2.3.21

88 λ
→
lin

Th. 2.3.6
xx

Th. 2.3.2

��
λ=
alg

Th. 2.3.22

88

Th. 2.3.4

[[

λ=
lin

Th. 2.3.8
xx

Th. 2.3.3

[[

A → B means “A is simulated by B”

Figure 2.2: Relations between the languages

The languages λlin and λalg have two distinct opinions on the nature of the addition and scalar
multiplication of lambda-terms. In λlin , the terms are purely syntactic and have no other meaning than
the one given by the rewrite system (with the exception of the associativity and commutativity). In
particular, α.(t + r) and α.t + α.r do not represent the same term: the former rewrites to the latter but
this is not reversible, indicating that it is preferred in a more canonical presentation. In λalg , the lambda-
terms are considered as being part of a mathematical vector space; therefore addition is the actual addition
in the space and terms are considered up to the equality in the vector space. For example, α.(t + r) and
α.t + α.r are two representations of the same term.

In this chapter, no assumptions are made and the distinction call-by-name/call-by-base and the dis-
tinction equality/reduction are separately considered. Therefore four languages are developed: a call-
by-base language λ=

lin with algebraic equality, a call-by-base language λ→lin with algebraic reduction, a
call-by-name language λ=

alg with algebraic equality and a call-by-name language λ→alg with algebraic re-
duction.

These four languages are summarised in Figure 2.1 and formalised in Definition 2.1.1. Informally, we
use the notation→a for the algebraic reductions in λalg , →` for the algebraic reductions in λlin and→βn

and →βb to the β-reduction in λalg and λlin respectively. It is also formalised in the Definition 2.1.1.

Definition 2.1.1. The following notations for the rewrite systems obtained by combining the rules de-
scribed in Figure 2.3 are used:

→a := A ∪ L ∪ ξ →` := Al ∪Ar ∪ L ∪ ξ ∪ ξλlin
→βb := βb ∪ ξ ∪ ξλlin

→=
a := (→a)↔ →=

` := (→`)↔ →βn := βn ∪ ξ

The four languages of Figure 2.1, and their associated rewrite systems, are defined as follows:

Language Corresponding Rewrite System
λ→lin →`+β := (→`) ∪ (→βb)
λ=
lin →=

`+β := (→=

`) ∪ (→βb)

λ→alg →a+β := (→a) ∪ (→βn)

λ→alg →=

a+β := (→=
a) ∪ (→βn)

2.2 Discussion on consistency and confluence

2.2.1 Local confluence
In this section we show that the four languages λ→lin , λ

→
alg , λ

=
lin , and λ

=
alg are locally confluent. We first

concentrate on the algebraic rules. For each of these calculi, we use the reductions describing the algebraic
structure: →a and →` correspond to an oriented rewriting description whereas →=

a and →=

` correspond
to a description by equalities (since every rewrite rule can be reversed, cf. Definition 2.1.1).

Lemma 2.2.1. The rewrite systems →a, →`, →=
a and →=

` are locally confluent.

Here it is placed in the factorisation group since it is required to close the critical pair α.t + α.t → (1 + 1).(α.t) and
α.t+ α.t→ (α+ α).t.

11

2. Call-by-name, call-by-base and the reduction/equality duality

Specific rules for λalg

Call-by-name (βn) Linearity of the application (A)

(λx.t) r → t[r/x] (t + r) s → (t) s + (r) s
(α.t) r → α.(t) r

(0) t → 0

Specific rules for λlin

Call-by-base (βb) Context rule (ξλlin
)

(λx.t) b → t[b/x]
t→ t′

(v) t→ (v) t′

Linearity of the application

Left linearity (Al) Right linearity (Ar)

(t + r) v → (t) v + (r) v (b) (t + r) → (b) t + (b) r
(α.t) v → α.(t) v (b) (α.t) → α.(b) t

(0) v → 0 (b) 0 → 0

Common rules

Ring rules (L = Asso ∪ Com ∪ F ∪ S)

Associativity (Asso) Commutativity (Com)

t + (r + s) → (t + r) + s t + r → r + t

(t + r) + s → t + (r + s)

Factorization (F) Simplification (S)

α.t + β.t → (α+ β).t α.(t + r) → α.t + α.r
α.t + t → (α+ 1).t 1.t → t
t + t → (1 + 1).t 0.t → 0

α.(β.t) → (α× β).t α.0 → 0
0 + t → t

Context rules (ξ)

t→ t′

(t) r→ (t′) r

t→ t′

t + r→ t′ + r

r→ r′

t + r→ t + r′

t→ t′

α.t→ α.t′

Figure 2.3: Rewrite rules of λ→lin and λ→alg

Proof. For →` and →a, we give a semi-automatised proof in the theorem prover Coq [Coq Dev. Team,
2009]. The interested reader can find the proof in [Valiron, 2011a] which is sketched in Appendix A.9.
Since for any rewrite system R, its symmetric closure R↔ is trivially locally confluent, both→=

a and→=

`

are locally confluent. �

The rewrites systems considered in this chapter are also locally confluent in the presence of the
β-rewrite rules.

Lemma 2.2.2 (Local confluence). The four languages in Figure 2.1 are locally confluent.

Proof (Sketch). The local confluence of the algebraic fragment is proven in Lemma 2.2.1. The beta-
reduction is confluent using a straightforward extension of the confluence of lambda calculus. Finally,
the beta-reduction and the algebraic fragments commute, making each rewrite system locally confluent.
The full proof is developed in Appendix A.1. �

12

2. Call-by-name, call-by-base and the reduction/equality duality

2.2.2 Simulations and the confluence issue

In this section, we show that the algebraic fragments are confluent modulo associativity and commuta-
tivity. Concerning the full languages, we show that they are either not confluent or trivially confluent (in
the sense that any term is reducing to any other). As a consequence, we introduce a generic notion of
language fragment to describe confluent and consistent sub-languages. In particular, fragments are used
in simulations theorems in section 2.3 for abstractly representing confluent sub-languages.

The algebraic fragment. It is clear that neither →a nor →` is strongly normalising: with both
systems one can go back and forth between t + r and r + t. They are however strongly normalising
modulo associativity and commutativity in the sense that any rewrite sequence consists eventually of
terms that are equal modulo associativity and commutativity. On the contrary, the rewrite systems →=

a

and →=

` are not.
In order to formalise this, AC denotes the system generated by AC = Asso ∪Com and R the rewrite

system obtained by taking off the rules Asso and Com where R stands for →a or →`. Hence, →a stands
for the system generated by A∪S ∪F ∪ ξ and →` for the system generated by Al ∪Ar ∪S ∪F ∪ ξ ∪ ξλlin

.

Definition 2.2.3. Let R be either →` or →a and t1R t2R . . . be a reduction sequence (finite or not)
characterised by the family of terms { ti }i and the family of rules {Ri }i used to go from ti to ti+1,
where Ri stands for a fixed rule in R. We say that the reduction is AC-finite if {Ri }i ∩ R is finite.
The AC-length of the rewrite sequence is the cardinal of the set {Ri }i ∩ R. The rewrite system R is
AC-strongly-normalising (AC-SN) if for any term t, there exists a number n such that the AC-length of
any rewrite sequence starting at t is less than n, in other words, the rewrite system R is AC-SN if every
rewrite sequence is AC-finite. A term M is AC-normal with respect to a rewrite system R if any rewrite
sequence starting with M consists only of rules AC.

Theorem 2.2.4. The systems →a and →` are AC-SN.

Proof. We use the technique described in [Arrighi and Dowek, 2008]. An auxiliary measure is defined on
terms by |(t) r| = (3|t|+ 2)(3|r|+ 2), |α.t| = 1 + 2|t|, |t+ r| = 2 + |t|+ |r|, |0| = 0, |λx.t| = 1 and |x| = 1.
This measure is preserved by rules AC and strictly decreasing on the other algebraic rules. �

Local confluence plus strong normalisation implies confluence (cf. for example [TeReSe, 2003]).

Corollary 2.2.5. The rewrite systems →a and →` are confluent, modulo AC. �

The four calculi. Although we have proved that the four languages under consideration are locally
confluent, neither λ→lin nor λ→alg is confluent: In each one, the term Yb − Yb rewrites both to 0 and b,
where Yb = (λx.(b + (x) x)) λx.(b + (x) x).

Remark 2.2.6. Regarding λ=
lin and λ=

alg , without restriction both are trivially confluent since for all terms
t and r, t reduces to r: t→= t+Yr−t−Yr−t →∗ r. Hence, with the algebraic equality, both languages can
simulate any rewrite system.

For getting back consistency, it is of course possible to modify the rewrite systems as it has been done
in [Arrighi and Dowek, 2008] but it would break the correspondence between call-by-base and call-by-
name. In this chapter we propose instead to restrict the set of terms. There are two known methods:

[Vaux, 2009] considers positive scalars (a semi-ring without additive inverse) on a language with
algebraic equality. The restriction on scalars is enough for getting uniqueness of normal forms. Although
this solves the consistency problem for the languages with algebraic equality, it does not give confluence
for the languages with algebraic reduction. Indeed, consider the critical pair Yt + Yt →` 2.Yt, Yt +
Yt→βbYt + t + Yt →` 2.Yt + t. The term 2.Yt can only produce an even number of t’s: we cannot close
the pair.

In the following chapters we use type systems for retrieving strong normalisation. This could be
adapted to this chapter’s setting, for example with a simple type system. We can get strong normalisation
for well-typed terms and, since both λ→lin and λ→alg satisfy local confluence, retrieve the existence and
unicity of normal forms for these languages. As the languages λ=

lin and λ=
alg have the same equational

theory, this guarantees that they are well-behaved with respect to the type system.

13

2. Call-by-name, call-by-base and the reduction/equality duality

The simulation theorems that we develop in this chapter are correct in an untyped setting (and in fact
trivially true when we simulate a language with algebraic reduction with a language with algebraic equality
as remarked above) but also true in any typed setting, provided that it satisfies subject reduction. Thus,
we do not restrict the calculi a priori: instead, we propose a notion of language fragments to parametrise
the simulation results. The definition of fragment is general enough to capture many settings: various
typed systems, but also restrictions to a given set of terms such as the set of AC-SN terms.

We define formally a fragment in the following way:

Definition 2.2.7. A fragment S of λ→lin (resp. λ→alg) is a language defined on a subset of terms closed
under →`+β-reduction (resp. →a+β-reduction). The rewrite system of S is inherited from the one of λ→lin
(resp. λ→alg).

The definition of a fragment in the presence of algebraic equalities should be treated carefully. Indeed,
note that the algebraic equalities are defined as t→= r if and only if t→ r or r→ t. As a consequence,
for any subset S of terms closed under→=-reduction, if t is in S then for any r (in S or not), t+r−r ∈ S
since t →= t + r − r. We therefore need to define the algebraic equality with respect to the particular
subset of terms under consideration.

Definition 2.2.8. A fragment S of λ=
lin (resp. λ=

alg) is a fragment of λ→lin (resp. λ→alg) together with an
algebraic equality defined as t→=

` r (resp. t→=
ar) if and only if t, r ∈ S and r→`t or t→`r (resp. r→at

or t→ar). The β-reduction is not modified.

Remark 2.2.9. When referring to a fragment of λ=
lin (resp. λ=

alg), we use the abuse of notation →=

`

(resp. →=
a) for the restricted rewrite system, when the fragment under consideration is clear.

2.3 Simulations
This section is concerned with the mutual simulations of the four languages.

The first class of problems relates algebraic reduction with algebraic equality. If simulating a language
with algebraic reduction with a language with algebraic equality is not specially difficult, going in the
opposite direction is not possible in general. Indeed, if 0 =` Yb − Yb→βbYb + b− Yb =` b is possible in
λ=
lin , (where Yb = (λx.(b + (x) x)) λx.(b + (x) x)) it is difficult to see how one could make 0 go to b in
λ→lin without further hypotheses. In this section, we show that a fragment of a language with algebraic
equality can be simulated by the corresponding fragment with algebraic reduction provided that the latter
is confluent (Theorems 2.3.3 and 2.3.4).

The second class of problems is concerned with call-by-base and call-by-name. In this chapter, the
simulations of call-by-name by call-by-base and its reverse are treated using continuation passing style
(CPS), extending the simulation techniques described in [Fischer, 1972, Plotkin, 1975] to the algebraic
case (Theorems 2.3.6, 2.3.8, 2.3.21 and 2.3.22).

The results are summarised in Figure 2.2. Solid arrows correspond to results where no particular
hypothesis on the language is made. Dashed arrows correspond to results where confluence is required.

2.3.1 Algebraic reduction versus algebraic equality
As the relation →`+β is contained in →=

`+β and the relation →a+β is contained in →=

a+β , the first
simulation theorems are trivial.

Theorem 2.3.1. For any term t if t→a+βr, then t→=

a+βr. �

Theorem 2.3.2. For any term t if t→`+βr, then t→=

`+βr. �

The simulations going in the other direction are only valid in the presence of confluence. In the follow-
ing two theorems, the algebraic equality is defined with respect to the considered fragment (cf. Definition
2.2.8).

Theorem 2.3.3. For any term t in a confluent fragment of λ→lin , if t→= ∗
`+βv, then t→∗`+βv′, with v→=∗

` v′.

Proof. First note that a value can only reduce to another value. This follows from direct inspection of
the rewriting rules. We proceed by induction on the length of the reduction.

14

2. Call-by-name, call-by-base and the reduction/equality duality

• If t→= ∗
`+βt, then choose v′ = t and note that t→∗`+βt.

• Assume the result true for t→= ∗
`+βv: there is a value v′ such that t→∗`+βv′ and v→=∗

` v′. Let
r→=

`+βt. Case distinction:

– r→βbt, then r→βbt→∗`+βv′ which implies r→∗`+βv′.

– r→=

` t, then either r→`t, and then this case is analogous to the previous one, or t→`r. Due
to the confluence of the subset, there exists a term s such that r→∗`+βs and v′→∗`s, implying
that s is a value, thus v′→=∗

` s. Then we have v′→=∗
` s and v→=∗

` v′, so s→=∗
` v, closing the

case.
�

Theorem 2.3.4. For any term t in a confluent fragment of λ→alg , if t→= ∗
a+βv, then t→∗a+βv

′, with
v→=∗

a v′.

Proof. Similar to the previous theorem. �

2.3.2 Call-by-name simulates call-by-base

The simulation of λlin with λalg . To prove the simulation of λlin with λalg we introduce an algebraic
extension of the continuation passing style encoding used to prove that call-by-name simulates call-by-
value in the regular λ-calculus [Plotkin, 1975].

Let J·K : λlin → λalg be the following encoding where f, g and h are fresh variables.

JxK = λf. (f) x, J0K = 0,
Jλx.tK = λf.(f) λx.JtK, J(t) rK = λf.(JtK) λg.(JrK) λh.((g) h) f,
Jα.tK = λf.(α.JtK) f, Jt + rK = λf.(JtK + JrK) f.

Let Ψ be the encoding for values defined by Ψ(x) = x, Ψ(0) = 0, Ψ(λx.t) = λx.JtK, Ψ(α.v) = α.Ψ(v),
Ψ(v + w) = Ψ(v) + Ψ(w). Note that this encoding is compatible with substitution:

Lemma 2.3.5. Jt[b/x]K = JtK[Ψ(b)/x] with b a base term.

Proof. Induction on t. cf. Appendix A.2. �

Using this encoding, we can simulate λ→lin with λ→alg , as formalised in the following theorem. The proof
is developed in the second part of this section.

Theorem 2.3.6 (Simulation). For any term t, if t→∗`+βv where v is a value, then (JtK) λx.x→∗a+βΨ(v).

Example 2.3.7. For any terms t and r, let 〈t, r〉 := λy.((y) t) r. Let copy be the term λx.〈x, x〉, and
let u = λx.r1 and v = λx.r2 be two values. Then (copy) (u + v)→∗`+β〈u,u〉 + 〈v,v〉 and (copy) (u +
v)→∗a+β〈u + v,u + v〉. We consider the simulation λ→lin to λ→alg .

J(copy) (u + v)K = λf.(JcopyK) λg.(Ju + vK) λh.((g) h) f
JcopyK = λf.(f) λx.J〈x, x〉K
J〈t, r〉K = λf.(f) Ψ(〈t, r〉)

Ju + vK = λf.(JuK + JvK) f
JuK = λg.(g) Ψ(u)

15

2. Call-by-name, call-by-base and the reduction/equality duality

We now rewrite t = (J(copy) (u + v)K) λz.z in λ→alg .

t →a+β (JcopyK) λg.(Ju + vK) λh.((g) h) λz.z
= (λf.(f) λx.J〈x, x〉K) λg.(Ju + vK) λh.((g) h) λz.z
→a+β (λg.(Ju + vK) λh.((g) h) λz.z) λx.J〈x, x〉K
→a+β (Ju + vK) λh.((λx.J〈x, x〉K) h) λz.z
→a+β (JuK + JvK) λh.((λx.J〈x, x〉K) h) λz.z
→a+β (JuK) λh.((λx.J〈x, x〉K) h) λz.z + (JvK) λh.((λx.J〈x, x〉K) h) λz.z
→∗a+β (λh.((λx.J〈x, x〉K) h) λz.z) Ψ(u) + (λh.((λx.J〈x, x〉K) h) λz.z) Ψ(v) (∗)
→∗a+β ((λx.J〈x, x〉K) Ψ(u)) λz.z + ((λx.J〈x, x〉K) Ψ(v)) λz.z

→∗a+β (J〈x, x〉K[Ψ(u)/x]) λz.z + (J〈x, x〉K[Ψ(v)/x]) λz.z

(Lemma 2.3.5) →∗a+β (J〈u,u〉K) λz.z + (J〈v,v〉K) λz.z
→∗a+β (λz.z) Ψ(〈u,u〉) + (λz.z) Ψ(〈v,v〉) (∗∗)
→∗a+β Ψ(〈u,u〉) + Ψ(〈v,v〉)
= Ψ(〈u,u〉+ 〈v,v〉)

Similarly, one can relate fragments of λ=
alg to fragments of λ=

lin as follows.

Theorem 2.3.8 (Simulation). For any two fragments S` of λ=
lin and Sa of λ=

alg such that ∀t ∈ S`,
(JtK) λx.x ∈ Sa , and for any term t in S`, if t→= ∗

`+βv where v is a value, then (JtK) λx.x→= ∗
a+βΨ(v).

Again, the proof is developed later in the section.

Remark 2.3.9. As we already noted several times, without restricting the languages, Theorem 2.3.8
would be trivial. Any term reducing to any other one, the desired reduction would be of course valid
without restriction. This theorem shows that if the calculi are restricted to fragments, the result is still
true.

Note that the fragments of algebraic λ-calculi usually considered in the literature satisfy the property
that if t is in a fragment of λ=

lin then (JtK) λx.x is in the corresponding fragment of λ=
alg . This is for

instance the case of the fragments obtained by considering non-negative scalars like in [Vaux, 2009], this
is also true for the various typing systems developed in the following chapters.

Once a term is encoded it can be reduced either by →∗a+β or by →∗`+β (respectively →= ∗
a+β or →= ∗

`+β)
without distinction, and still obtain the same result. We state this fact as a corollary:

Corollary 2.3.10 (Indifference).

• For any term t, if t→∗`+βv where v is a value, then (JtK) λx.x→∗`+βΨ(v);

• For any fragment S of λ=
lin such that ∀t ∈ S, (JtK) λx.x ∈ S, and for any term t in S, if t→= ∗

`+βv
where v is a value, then (JtK) λx.x→= ∗

`+βΨ(v).

Proof. It suffices to check the proofs of Theorems 2.3.6 and 2.3.8 to verify that all the reductions →∗a+β

are done by rules common in both languages. �

Example 2.3.11. Note that in Example 2.3.7 one could have as well rewrite with →`+β which illustrates
the indifference property (Corollary 2.3.10).

Now we proceed to prove Theorems 2.3.6 and 2.3.8 by extending the proof in [Plotkin, 1975] to the
algebraic case.

An administrative operation. We define a convenient infix operation (:) capturing the behaviour
of translated terms. For example, if b is a base term, i.e. a variable or an abstraction, then its trans-
lation into λ→alg is JbK = λf. (f) Ψ(b). If we apply this translated term to a certain b′, we obtain
(λf. (f) Ψ(b)) b′→a+β(b′) Ψ(b). We define b : b′ = (b′) Ψ(b) and get that (JbK) b′→a+βb : b′. This
fact will be generalised to (JtK) b→a+βt : b in Lemma 2.3.13.

16

2. Call-by-name, call-by-base and the reduction/equality duality

Definition 2.3.12. Let (:) : Λλlin
× Λλalg

→ Λλalg
be the infix binary operation defined by:

0 : b = 0
b′ : b = (b) Ψ(b′)
α.t : b = α.(t : b)

t + r : b = t : b + r : b

(0) t : b = 0
(b′) t : b = t : λf.((Ψ(b′)) f) b

(α.t) r : b = α.(t) r : b
(t + r) s : b = ((t) s + (t) s) : b
((t) r) s : b = (t) r : λg.(JsK) λh.((g) h) b

Lemma 2.3.13. If b is a base term, then for any t, (JtK) b→∗a+βt : b.

Proof. Structural induction on t. We give the case t = (t′) r, as an example (cf. Appendix A.3 for the
full proof). First an intermediate result is needed: for any t, t : λg.(JrK) λh.((g) h) b→a+β(t) r : b. This
can be proved by structural induction on t.

Then (J(t′) rK) b = (λf.(Jt′K) λg.(JrK) λh.((g) h) f) b→a+β(Jt′K) λg.(JrK) λh.((g) h) b. Note that
λg.(JrK) λh.((g) h) b is a base term, so by the induction hypothesis the above term reduces to t′ :
λg.(JrK) λh.((g) h) b which by the previous intermediate result, →a+β-reduces to (t′) r : b. �

The following lemmas and its corollary state that the (:) operation preserves reduction.

Lemma 2.3.14. If t→`r then ∀b base term, t : b→∗ar : b.

Proof. Induction on the possible rule applied from t→`r. We give one simple case as an example (cf. Ap-
pendix A.4 for the full proof). Let α.(t+ r)→` α.t+α.r. Then α.(t+ r) : b = α.(t : b+ r : b)→a α.(t :
b) + α.(r : b) = α.t + α.r : b. �

Lemma 2.3.15. If t→`+βr then ∀b base term, t : b→∗a+βr : b.

Proof. If t→`r, then use Lemma 2.3.14. If t→βbr, then we can prove it by induction on the possible rule
applied (either βb, ξλlin

or one of ξ). We give the case of the βb-reduction as an example (cf. Appendix A.5
for the full proof): (λx.t) b′ : b = b′ : λf.((Ψ(λx.t)) f) b = (λf.((Ψ(λx.t)) f) b) Ψ(b′) and this βn-
reduces to ((Ψ(λx.t)) Ψ(b′)) b = ((λx.JtK) Ψ(b′)) b which also βn-reduces to JtK[Ψ(b′)/x] b which by
Lemma 2.3.5 is equal to Jt[b′/x]K b, which by Lemma 2.3.13, →∗a+β-reduces to t[b′/x] : b. �

Corollary 2.3.16. If t→=

`+βr then ∀b base terms, t : b→= ∗
a+βr : b.

Proof. By case distinction. If t→`+βr, then by Lemma 2.3.15, t : b→∗a+βr : b, which implies t : b→= ∗
a+βr :

b. If r→`t, then by Lemma 2.3.14, r : b→∗at : b, which also implies t : b→= ∗
a+βr : b. �

Finally, the (:) operation also captures the translation of values in the following way:

Lemma 2.3.17. For any value v, v : λx.x→∗a+βΨ(v)

Proof. We proceed by structural induction on v.

• Let v be a base term. Then v : λx.x = (λx.x) Ψ(v)→a+βΨ(v).

• Let v = v1 +v2. Then v : λx.x = v1 : λx.x+v2 : λx.x, which by the induction hypothesis, reduces
to Ψ(v1) + Ψ(v2) = Ψ(v).

• Let v = α.v′. Then v : λx.x = α.(v′ : λx.x), which by the induction hypothesis, reduces to
α.Ψ(v′) = Ψ(v).

• Let v = 0. Then v : λx.x = 0 = Ψ(v).
�

Example 2.3.18. We discuss Example 2.3.7 in the light of these results. The term (∗) is equal to
the terms (copy) (u + v) : λz.z and ((copy) u + (copy) v) : λz.z. The term (∗∗) is equal to the term
(〈u,u〉 + 〈v,v〉) : λz.z which reduces to Ψ(〈u,u〉 + 〈v,v〉). We do indeed have the rewrites requested by
Lemmas 2.3.13, 2.3.15 and 2.3.17.

Now the proofs of Theorems 2.3.6 and 2.3.8 go as follows.

17

2. Call-by-name, call-by-base and the reduction/equality duality

Proof of Theorem 2.3.6. From Lemma 2.3.13, (JtK) λx.x→∗a+βt : λx.x and from Lemma 2.3.15, it→∗a+β-
reduces to v : λx.x. From Lemma 2.3.17, v : λx.x→∗a+βΨ(v). �

Proof of Theorem 2.3.8. From Lemma 2.3.13, (JtK) λx.x→∗a+βt : λx.x, which implies that (JtK) λx.x
→= ∗
a+β-reduces to t : λx.x. From Corollary 2.3.16, this latter term →= ∗

a+β-reduces to v : λx.x. From
Lemma 2.3.17, v : λx.x→∗a+βΨ(v), which implies that v : λx.x→= ∗

a+βΨ(v). Note that since (JtK) λx.x ∈
Sa , t : λx.x is also in S` due to the closeness under →=

a of Sa . The same applies to t : λx.x, thus also to
v : λx.x and finally to Ψ(v). �

2.3.3 Call-by-base simulates call-by-name

The simulation of λ→alg with λ→lin . To state that λ→lin simulates λ→alg , we use an algebraic extension of
the continuation passing style encoding following again [Plotkin, 1975].

Let {|·}| : λ→alg → λ→lin be the following encoding where f, g and h are fresh variables.

{|x}| = x, {|0}| = λf.(0) f,
{|λx.t}| = λf.(f) λx.{|t}| , {|(t) r}| = λf.({|t}|) λg.((g) {|r}|) f,
{|α.t}| = λf.(α.{|t}|) f, {|t + r}| = λf.({|t}| + {|r}|) f.

This encoding satisfies two useful properties (the first is a trivial result and the second follows by induction
on t (cf. Appendix A.6)).

Lemma 2.3.19. For all terms t, the term {|t}| is a base term. �

Lemma 2.3.20. {|t[r/x]}| = {|t}| [{|r}| /x]. �

Let Φ be the encoding for values defined by Φ(x) = (x) λy.y, Φ(0) = 0, Φ(λx.t) = λx.{|t}| , Φ(α.v) =
α.Φ(v), Φ(v + w) = Φ(v) + Φ(w).

Simulation theorems, similar to Theorems 2.3.6 and 2.3.22, can be stated as follows.

Theorem 2.3.21 (Simulation). For any program t (i.e. closed term) if t→∗a+βv where v is a value, then
({|t}|) λx.x→∗`+βΦ(v).

Theorem 2.3.22 (Simulation). For any two fragments Sa of λ=
alg and S` of λ=

lin such that ∀t ∈ Sa ,
({|t}|) λx.x ∈ S`, and for any program t in Sa , if t→= ∗

a+βv where v is a value, then ({|t}|) λx.x→= ∗
`+βΦ(v).

A result similar to Corollary 2.3.10 can also be formulated. It is proven in a similar manner.

Corollary 2.3.23 (Indifference).

• For any program t, if t→∗a+βv where v is a value, then ({|t}|) λx.x→∗a+βΦ(v);

• For any fragment S of λ=
alg such that ∀t ∈ S, ({|t}|) λx.x ∈ S, and for any program t in S, if

t→= ∗
a+βv where v is a value, then ({|t}|) λx.x→= ∗

a+βΦ(v). �

Before moving to the description of the proof of Theorems 2.3.21 and 2.3.22, let us consider an
example.

Example 2.3.24. We illustrate Theorem 2.3.21 using the term (copy) (u + v) of Example 2.3.7 which
reduces to 〈u,u〉+ 〈v,v〉 in λ→lin and to 〈u + v,u + v〉 in λ→alg .

{|(copy) (u + v)}| = λf.({|copy}|) λg.((g) {|u + v}|) f
{|copy}| = λf.(f) λx.{|〈x, x〉}|
{|〈t, r〉}| = λf.(f) Φ(〈t, r〉)
{|u + v}| = λf.({|u}| + {|v}|) f
{|u}| = λg.(g) Φ(u)

18

2. Call-by-name, call-by-base and the reduction/equality duality

We now rewrite r = ({|(copy) (u + v)}|) λz.z in λ→alg .

r →`+β ({|copy}|) λg.((g) {|u + v}|) λz.z
= (λf.(f) λx.{|〈x, x〉}|) λg.((g) {|u + v}|) λz.z
→`+β (λg.((g) {|u + v}|) λz.z) λx.{|〈x, x〉}|
→`+β ((λx.{|〈x, x〉}|) {|u + v}|) λz.z (∗∗∗)

(Lemma 2.3.19) →`+β ({|〈x, x〉}| [{|u + v}| /x]) λz.z
(Lemma 2.3.20) = ({|〈u + v,u + v〉}|) λz.z

→`+β (λz.z) Φ(〈u + v,u + v〉) (∗∗∗∗)
→`+β Φ(〈u + v,u + v〉)

Proof of the simulation theorems. In Section 2.3.2, the proofs of the simulations theorems were
performed using an administrative operation “ :” and three intermediate results, as follows. The term b
is taken as a base term.

1. Prove that (JtK) b→∗a+βt : b;

2. prove that if t→`+βr then t : b→∗a+βr : b;

3. prove that if v is a value, v : λx.x→∗a+βΨ(v).

For the simulation theorems of the present section, we use a similar procedure.

An administrative operation. We keep the same notation for the administrative, infix operation
defined for the purpose of the proof.

Definition 2.3.25. Let (:) : Λλalg
× Λλlin

→ Λλlin
be the infix binary operation defined by:

0 : b = 0
b′ : b = (b) Φ(b′)
α.t : b = α.(t : b)

t + r : b = t : b + r : b

(0) r : b = 0
(b′) r : b = ((Φ(b′)) {|r}|) b

(α.t) r : b = α.(t) r : b
(t + r) s : b = ((t) s + (r) s) : b
((t) r) s : b = (t) r : λf.((f) {|s}|) b

The three lemmas needed for the proof of the simulation theorems now read as follow.

Lemma 2.3.26. If b is a base term, then for any closed term t, ({|t}|) b→∗`+βt : b.

Proof. The proof is done by structural induction on t. We follow the sketch of the proof of Lemma 2.3.13,
and give the case t = (t′) r, as an example (cf. Appendix A.7 for the full proof). First we prove by
induction on t that t : λg.((g) {|r}|) b→∗`+β(t) r : b. Then ({|(t′) r}|) b = (λf.({|t′}|) λg.((g) {|r}|) f) b,
→`+β-reduces to ({|t′}|) λg.((g) {|r}|) b. Note that λg.((g) {|r}|) b is a base term, so by the induction
hypothesis the above term reduces to t′ : λg.((g) {|r}|) b which by the previous intermediate result,
→`+β-reduces to (t′) r : b. �

Lemma 2.3.27. If t→a+βr then ∀b base term, t : b→∗`+βr : b.

Proof. Case by case on the rules of λ→alg. We give the case of the βn-reduction as an example (cf. Ap-
pendix A.8 for the full proof): (λx.t) r : b = ((Φ(λx.t)) {|r}|) b = ((λx.{|t}|) {|r}|) b which by
Lemma 2.3.19, →`+β-reduces to ({|t}| [{|r}| /x]) b. This, by Lemma 2.3.20, is equal to ({|t[r/x]}|) b and
this, by Lemma 2.3.26, →∗`+β-reduces to t[r/x] : b.

Note that in the previous derivation, the reduction (λx.{|t}|) {|r}| →`+β{|t}| [{|r}| /x] is valid since for any
term r, {|r}| is a base term. �

Lemma 2.3.28. If v is a value and b is a base term, v : λx.x→∗`+βΦ(v). �

Example 2.3.29. We discuss Example 2.3.24 in the light of these results. The term (∗∗∗) is equal to
the terms (copy) (u + v) : λz.z. The term (∗∗∗∗) is equal to the term 〈u + v,u + v〉 : λz.z which reduces
to Φ(〈u + v,u + v〉). Again, we have the rewrites requested by Lemmas 2.3.26, 2.3.27 and 2.3.28.

19

2. Call-by-name, call-by-base and the reduction/equality duality

We are now ready to prove the simulation theorems. As advertised, these proofs reflect the exact
same structures of the proofs of Theorems 2.3.6 and 2.3.8.

Proof of Theorem 2.3.21. From Lemma 2.3.26, ({|t}|) λx.x→∗`+βt : λx.x and from Lemma 2.3.27 it→∗`+β-
reduces to v : λx.x. From Lemma 2.3.28, v : λx.x→∗`+βΦ(v). �

Proof of Theorem 2.3.22. From Lemma 2.3.26, ({|t}|) λx.x→∗`+βt : λx.x, which implies that ({|t}|) λx.x
→= ∗
`+β-reduces to t : λx.x. A result equivalent to Corollary 2.3.16 can be shown as easily: if t→=

ar then for
all base terms b,t : b→=∗

` r : b. This entails that t : λx.x →= ∗
`+β-reduces to v : λx.x. From Lemma 2.3.28,

V : λx.x→∗`+βΦ(v), which implies that v : λx.x→= ∗
`+βΦ(v). Note that since ({|t}|) λx.x ∈ S`, t : λx.x is

also in S` due to the closeness under →=

` of S`. The same applies to t : λx.x, thus also to v : λx.x and
finally to Φ(v). �

2.3.4 The remaining simulations
In Figure 2.2, some arrows are missing. We are now showing that the already existing arrows “compose”
well. The first two simulations are λ→alg → λ=

lin and λ→lin → λ=
alg and do not require confluence.

Theorem 2.3.30. For any program t, if t→∗`+βv (respectively t→∗a+βv) where v is a value, then
(JtK) λx.x→= ∗

a+βΨ(v) (resp. ({|t}|) λx.x→= ∗
`+βΦ(v)).

Proof. Given that t→∗`+βv, by Theorem 2.3.6, (JtK) λx.x→∗a+βΨ(v), which by Theorem 2.3.1 implies
(JtK) λx.x→= ∗

a+βΨ(v).
Analogously, given that t→∗a+βv, by Theorem 2.3.21, ({|t}|) λx.x→∗`+βΦ(v), which by Theorem 2.3.2

implies ({|t}|) λx.x→= ∗
`+βΦ(v). �

The other two simulations are λ=
alg → λ→lin and λ=

lin → λ→alg and they do require confluence.

Theorem 2.3.31. For any program t in a confluent fragment of λ=
lin (resp. λ=

alg), if t→= ∗
`+βv (respectively

t→= ∗
a+βv) then (JtK) λx.x→∗a+βΨ(v′) with v→=∗

a v′ (respectively ({|t}|) λx.x→∗`+βΦ(v′) with v→=∗
` v′).

Proof. Given that t→= ∗
`+βv, by Theorem 2.3.6, (JtK) λx.x→= ∗

a+βΨ(v), which by Theorem 2.3.4, which
requires confluence, implies (JtK) λx.x→∗a+βΨ(v). The other result is similar using Theorem 2.3.21.
Notice that that the theorems with arrows are trivially valid when we take a fragment. �

2.4 Conclusion and open questions
In this chapter we described four canonical algebraic lambda-calculi with vectorial structures, recapitu-
lating the few existing means of writing such a language. We has shown how each language can simulate
the other, by taking care of marking where confluence is used or not.

As already shown by Plotkin [Plotkin, 1975], if the simulation of call-by-value by call-by-name is
sound, it fails to be complete for general (possibly non-terminating) programs. A known solution to this
problem is developed by Sabry and Wadler [1997]. A recent work [Assaf and Perdrix, 2011] shown that
the technique can be adapted to the algebraic case to retrieve completeness. The work by Sabry and
Wadler [1997] develop a Galois connection between call-by-name and call-by-value. A direction for study
is to build on this work to also get a Galois connection in the algebraic case.

Concerning semantics, the algebraic λ-calculus admits finiteness spaces as a model [Ehrhard, 2005,
2010]. What is the structure of the model of the linear algebraic λ-calculus induced by the continuation-
passing style translation in finiteness spaces? The algebraic lambda-calculus can be equipped with a
differential operator. What is the corresponding operator in call-by-base through the translation?

20

Chapter 3

A type system accounting for scalars

Résumé du Chapitre

Dans ce chapitre, nous introduisons Scalar ; un système de types similaire au Système F pour
le lambda-calcul linéaire algébrique. Nous démontrons que le système de types Scalar vérifie
à la fois la propriété de préservation du type par réduction et la propriété de normalisation
forte, ce qui constitue nos principaux résultats techniques de ce chapitre. La normalisation
forte offre un simplification significative de λlin lui-même, en enlevant la nécessité de certaines
restrictions dans ses règles de réduction. Mais le point le plus important et le plus original de
ce système de type, est le fait qu’il garde la trace de « la quantité d’un type » présente dans
un terme. A titre d’exemple de son utilisation, nous montrons qu’il peut servir comme une
garantie que la forme normale d’un terme est barycentrique, c’est à dire que ses scalaires
somment à un.

In this chapter we provide a fine-grained, System F -like type system for the linear-algebraic lambda-
calculus, λlin (cf. Section 1.2). We show that this “scalar” type system enjoys both the subject-
reduction property and the strong-normalisation property, our main technical results. The latter

yields a significant simplification of the linear-algebraic lambda-calculus itself, by removing the need for
most of the restrictions in its reduction rules. But the more important, original feature of this scalar type
system is that it keeps track of ‘the amount of a type’ that is present in each term. As an example of its
use, we shown that it can serve as a guarantee that the normal form of a term is barycentric, i.e. that
its scalars are summing to one.

Plan of the chapter. Section 3.1 presents the Scalar type system with its grammar, equivalences
and inference rules. Section 3.2 shows the subject reduction property giving consistency to the system.
Section 3.3 shows the strong normalisation property for this system, allowing us to lift the above discussed
restrictions in the reduction rules. In section 3.4 we formalise the type system B for barycentric calculi.
Section 3.5 concludes.

3.1 The Scalar Type System

The grammar of types, cf. Figure 3.1, defines the set of types (notation: T) and its syntactic subclass
(notation: U) of what we call unit types. Notice that the grammar for U does not allow for scalars except
to the right of an arrow. More generally, notice the novelty of having scalars weighting the amount of a
type.

Type variables are denoted by X,Y , etc. and can only ever be substituted by a unit type. Contexts are
denoted by Γ,∆, etc. and are defined as sets {x :U, . . .}, where x is a term variable appearing only once in
the set, and U ∈ U . We usually omit the brackets of the set. The substitution of X by V in U is defined as
usual, and is written U [V/X]. We sometimes use the vectorial notation U [~V / ~X] for U [V1/X1] · · · [Vn/Xn]

if ~X = X1, . . . , Xn and ~V = V1, . . . , Vn. We also may abuse notation and say ~X /∈ S meaning that none
of the Xi from ~X are in the set S. We write Γ[U/X] to the substitution of X by U in each type of Γ. Also

21

3. A type system accounting for scalars

we write (α.T)[U/X] for α.T [U/X]. FV (T) designates the set of free variables of the type T , defined
in the usual manner, and FV (Γ) is the union of the sets of free variables of each type in Γ. Scalars are
denoted by α, β, γ . . . and are members of the same commutative ring (S,+,×) as those of terms.

We also define an equivalence relation upon types as follows:

Definition 3.1.1. For any α, β ∈ S and T ∈ T . We define the type equivalence ≡ to be the least
congruence such that

• α.0 ≡ 0 • 0.T ≡ 0 • 1.T ≡ T • α.(β.T) ≡ (α× β).T • ∀X.α.T ≡ α.∀X.T

Types: T,R, S ::= U | ∀X.T | α.T | 0
Unit types: U, V,W ::= X | U → T | ∀X.U

ax
Γ, x :U ` x :U

Γ ` t :T T ≡ S
≡

Γ ` t :S

Γ ` t :α.(U → T) Γ ` r :β.U
→E

Γ ` (t) r : (α× β).T

Γ, x :U ` t :T
→I

Γ ` λx.t :U → T

Γ ` t :∀X.T
∀E

Γ ` t :T [U/X]

Γ ` t :T X /∈ FV (Γ)
∀I

Γ ` t :∀X.T

ax0
Γ ` 0 : 0

Γ ` t :α.T Γ ` r :β.T
+I

Γ ` t + r : (α+ β).T

Γ ` t :T
sI

Γ ` α.t :α.T

Figure 3.1: Types and typing rules of Scalar

The complete set of typing rules of Scalar is shown in Figure 3.1. Let us justify this type system.
Splitting the grammar into general types and unit types is a necessary consequence of the fact that we
want scalars in the types to reflect scalars in the terms (e.g. α.λx.t should have a type α.U). Indeed if we
did not have the restriction on the left side of an arrow being a unit type, i.e. U → T , then we would have
types like (α.X) → X, which a priori do not make sense, because abstractions receive only base terms
as arguments. This could be fixed by adding the equivalence (α.A)→ B ≡ α.(A→ B), making sure that
α is non-zero. But still we would need to keep the →E rule restricted to having a unit type on the left
hand side of the arrow, otherwise we would break the required correspondence between scalars-in-types
and scalars-in-terms, e.g. :

` α.λx.x : (α.T)→ T ` t :α.T

` (α.λx.x) t :T
but (α.λx.x) t→∗ α.t which should be of type α2.T

Again, we want the scalars in the types to represent those in the terms, hence the rule sI . Rule +I

takes care of sums of terms, and term 0 gets the special type 0 by an axiom.
Finally, let us go back to the application. The standard rule→E from System F needs to be consistent

with the extra rules for application that we have on top of β-reduction in λlin ; namely the Application
rules:

1. (t + r) u→ (t) u + (r) u

2. (u) (t + r)→ (u) t + (u) r

3. (α.t) r→ α.(t) r

4. (r) (α.t)→ α.(r) t

5. (0) t→ 0

6. (t) 0→ 0

Notice that the terms t and r in rules (1) and (2) must now have the same type (up to a scalar)
according to rule +I , so the type of t + r is analogous to the type of α.t in rules (3) and (4). Also, the
type for 0 in rules (5) and (6) is the same as that of 0.t if we take α = 0 in rules (3) and (4). Thus we
can focus our discussion on rules (3) and (4).

By rule (3), we must have:
Γ ` t :α.(U → T) Γ ` r :U

Γ ` (t) r :α.T

22

3. A type system accounting for scalars

By rule (4), we must have:
Γ ` t :U → T Γ ` r :β.U

Γ ` (t) r :β.T

By combining these two we obtain the →E rule presented in Figure 3.1.

Remark 3.1.2. A good insight into the type system is that, due to equivalences, scalars occur only
at top-level and the level of arrows. This fits very well with the idea that in λlin all constructs are
linear, except for abstraction. With this in mind, the syntax of arrow types could have been restricted to
U → α.V , or even written as U →α V instead. In other words, we could get rid of the type equivalences
(cf. Definition 3.1.1) and represent each type equivalence class by just its canonical member. Such a
design choice would spare us some lemmas (cf. Section 3.2), but comes at a price:

• Equivalences between 0.T and 0.R or 1.T and T would still need to be enforced through an equivalence
relation or some inelegant case distinctions, at least if we want to maintain them;

• More generally our aim is to reflect some of the vectorial structure of the terms of λlin up at the
level of types. In that sense the explicit type equivalences we have given provide a good indication
that types have the desired structure.

3.2 Subject reduction

The following theorem ensures that typing is preserved by reduction, making our type system consistent.
Having such a property is part of the basic requirements for a type system.

Theorem 3.2.1 (Subject Reduction). For any terms t, t′, any context Γ and any type T , if t→ t′, then
Γ ` t :T ⇒ Γ ` t′ :T .

The proof of this theorem is quite long and non-trivial. This is one of the main technical contributions
of the chapter.

3.2.1 Preliminary lemmas

In order to prove this theorem, we need several auxiliary lemmas standing for general properties of our
system. We have tried to provide an intuition of every lemma so as to make it easier to follow. Also, we
divided them in four groups, reflecting the nature of their statement.

Lemmas about types

The lemmas in this section are statements about the properties of the types themselves, i.e. their equiv-
alences.

It is not so hard to see that every type is equivalent to a scalar multiplied by a unit type (i.e. a type
in U). A type in U can of course always be multiplied by 1 (proof in Appendix B.1).

Lemma 3.2.2 (α unit). ∀T ∈ T , ∃U ∈ U , α ∈ S such that T ≡ α.U . �

This first lemma should not be misinterpreted however: this does not mean to say that any scalar
appearing within a type can be factored out of the type. For example, even a simple unit type X → α.X
is not equivalent to α.(X → X).

The following just says that when two types are equivalent, then the outer left scalars are the same:

Lemma 3.2.3 (Unit does not add scalars). ∀U,U ′ ∈ U , ∀α, β ∈ S, if α.U ≡ β.U ′ then α = β and, if
α 6= 0, then U ≡ U ′.

Proof. Following U grammar, neither U nor U ′ could contain scalars in this head form but only in the
right side of a type U → T . However, no equivalence rule lets it come out from the right of the arrow
and get to the head-form, so if α.U ≡ β.U ′ that means α = β = 0 or U ≡ U ′ and α = β. �

23

3. A type system accounting for scalars

Several of the following lemmas will be proved by induction on the size of the derivation tree, so, we
need to formally define what we mean by this size. In our definition we count the depth of the tree, but
ignoring any application of an equivalence rule:

We define the size of a derivation tree inductively as follows

size

 R
S′

======== ≡
S

 = 0 size

π1 π2
R′

S′

======== ≡
S

 = max{size(π1), size(π2)}+ 1

where π1, π2 are derivation trees, S is a sequent, R and R′ are type inference rules. We denote by Sn a
sequent that can be derived with a proof of size n.

Without actually making a subtyping theory, we define a pre-order (�) between types following
[Barendregt, 1992]:

Definition 3.2.4. For any types T,R, S and any type variable X,

1. write T ≺ R if either R ≡ ∀X.T or T ≡ ∀X.S and R ≡ S[U/X] for some U ∈ U .

2. � is the reflexive (in terms of ≡) and transitive closure of ≺.

Notice that scalars do not interfere with the order, as stated by the following lemma.

Lemma 3.2.5 (Scalars keep order). For any types T , R and for any scalar α, if T � R then α.T � α.R.

Proof. Let T � R, then assume T ≡ R1 ≺ · · · ≺ Rn ≡ R. Then ∀i one has Ri ≺ Ri+1. So, the possible
cases are:

• Ri+1 ≡ ∀X.Ri, then α.Ri ≺ ∀X.α.Ri ≡ α.∀X.Ri ≡ α.Ri+1.

• Ri ≡ ∀X.S and Ri+1 ≡ S[U/X], then α.Ri ≡ α.∀X.S ≡ ∀X.α.S ≺ (α.S)[U/X] ≡ α.(S[U/X]) ≡
α.Ri+1.

�

The following lemma states that if two arrow types are ordered, then they are equivalent up to some
substitution. (proof in Appendix B.2).

Lemma 3.2.6 (Arrows comparison). For any types U, V ∈ U and T,R ∈ T , if V → R � U → T , then
∃ ~W, ~X / U → T ≡ (V → R)[~W/ ~X]. �

Classic lemmas

The lemmas in this section are the classic ones, which appear in most subject reduction proofs.

As a pruned version of a subtyping system, we can prove the subtyping rule:

Lemma 3.2.7 (�-subsumption). For any term t, for any types T , R and any context Γ such that
FV (T) ∩ FV (Γ) = ∅, if T � R, then

Γ ` t :T
======
Γ ` t :R

where renaming of type variables may occur.

Proof. It suffices to show the property for T ≺ R. Cases

• R ≡ ∀X.T . Cases.

– X /∈ FV (Γ), by rule ∀I , Γ ` t :∀X.T .
– X ∈ FV (Γ), then X /∈ FV (T), so take a fresh variable Y , which is not in FV (Γ), and then

by rule ∀I , Γ ` t :∀Y.T . Notice that ∀X.T = ∀Y.T since neither X nor Y appears in T .

• T ≡ ∀X.S and R ≡ S[U/X], then by rule ∀E , Γ ` t :S[U/X].
�

24

3. A type system accounting for scalars

Proving subject reduction means proving that each reduction rule preserves the type. The way to do
this is to go in the opposite direction to the reduction rule, i.e. to study the reduct so as to understand
where it may come from, thereby decomposing the redex in its basic constituents. Generation lemmas
accomplish that purpose.

We will need five generation lemmas: the two classical ones, one for applications (Lemma 3.2.8) and
one for abstractions (Lemma 3.2.9); and three new ones for the algebraic rules, one for products by scalars
different to 0 (Lemma 3.2.10) other for product by 0 (Lemma 3.2.11) and one for sums (Lemma 3.2.12).
Their proofs follows by induction on the typing derivation and can be found in Appendices B.3 to B.7.

Lemma 3.2.8 (Generation lemma (app)). For any terms t, r, any type T , any scalar γ, any context Γ
and any number n ∈ N, if Sn =Γ ` (t) r : γ.T , then ∃α, β ∈ S, r, s ∈ N with max(r, s) < n, U ∈ U and
R � T such that Sr =Γ ` r :α.U and Ss =Γ ` t :β.U → R with α× β = γ. �

Lemma 3.2.9 (Generation lemma (abs)). For any term t, any type T , any context Γ and any number
n ∈ N, if Sn =Γ ` λx.t : T then ∃U ∈ U , R ∈ T and m < n such that Sm =Γ, x : U ` t :R and
U → R � T . �

Lemma 3.2.10 (Generation lemma (sc)). For any scalar α 6= 0, any context Γ, any term t, any type T
and any number n ∈ N, if Sn =Γ ` α.t :α.T , then ∃m < n such that Sm =Γ ` t :T . �

Lemma 3.2.11 (Generation lemma (sc-0)). For any context Γ, any term t, any type T and any number
n ∈ N, if Sn =Γ ` 0.t :T , then ∃R and m < n such that Sm =Γ ` t :R. �

Lemma 3.2.12 (Generation lemma (sum)). For any terms t, r, any scalar α, any type U ∈ U , any
context T and any number n ∈ N, if Sn =Γ ` t + r :α.U , then ∃δ, γ ∈ S and r, s ∈ N with max(r, s) < n
such that Sr =Γ ` t : δ.U and Ss =Γ ` r : γ.U with δ + γ = α. �

The following lemma is quite standard in proofs of subject reduction for System F -like systems, and
can be found in [Barendregt, 1992, Krivine, 1990]. It ensures that when substituting type variables for
types, or term variables for terms, in an adequate manner, then the type derived remains valid. Its proof
is fully depicted in Appendix B.8.

Lemma 3.2.13 (Substitution). For any term t, any base terms b, any types T ∈ T , ~U ∈ Un and any
context Γ,

1. Γ ` t :T ⇒ Γ[~U/ ~X] ` t :T [~U/ ~X].

2. { Γ, x :U ` t :T and Γ ` b :U } ⇒ Γ ` t[b/x] :T . �

The following corollary allows the arrow to be split without needing to consider the order relation:

Corollary 3.2.14 (of Lemma 3.2.9). For any term t, any types T ∈ T , U ∈ U and any context Γ, if
Γ ` λx.t :U → T , then Γ, x :U ` t :T .

Proof. Let Γ ` λx.t : U → T . By Lemma 3.2.9, ∃V,R such that V → R � U → T and Γ, x : V `
t :R, then by Lemma 3.2.6, ∃ ~W, ~X such that U → T ≡ (V → R)[~W/ ~X] and so by Lemma 3.2.13,
Γ[~W/ ~X], x :V [~W/ ~X] ` t :R[~W/ ~X], i.e. Γ[~W/ ~X], x :U ` t :T .

Notice that if Γ[~W/ ~X] ≡ Γ, then we have finished. In the other case, ~X appears free on Γ. Since
V → R � U → T and Γ ` λx.t : V → R, according to Lemma 3.2.7, U → T can be obtained from
V → R as a type for λx.t; then we would need to use the rule ∀I ; thus ~X cannot appear free in Γ, which
constitutes a contradiction. So, Γ, x :U ` t :T . �

Lemmas about the scalars

This section contains the lemmas which make statements about the relative behaviour of the scalars
within terms and within types. For example, scalars appearing in the terms are reflected within the
types also. This is formalised in the following lemma and proved by induction on the typing derivation
in Appendix B.9.

Lemma 3.2.15 (Scaling unit). For any term t, scalar α, type T and context Γ, if Γ ` α.t :T then there
exists U ∈ U and γ ∈ S such that T ≡ α.γ.U . �

25

3. A type system accounting for scalars

A base term can always be given a unit type (proof by induction on the typing derivation in Ap-
pendix B.10).

Lemma 3.2.16 (Base terms in unit). For any base term b, context Γ and type T , Γ ` b : T ⇒ ∃U ∈
U such that T ≡ U . �

By ax0, it is easy to see that 0 has type 0, but also by using equivalences between types we have that
∀X.0 is equivalent to 0 and any T such that 0 � T , will also be equivalent to 0. Then we can state the
following lemma (proof by induction in Appendix B.11).

Lemma 3.2.17 (Type for 0). For any context Γ and type T , Γ ` 0 :T ⇒ T ≡ 0. �

The following theorem is an important one. It says that our Scalar type system is polymorphic only
in the unit types but not in the general types in the sense that even if it is possible to derive two types
for the same term, the outer left scalar (i.e. scalar in the head position) must remain the same. Its proof
is not trivial, as it uses several of the previously defined lemmas.

Theorem 3.2.18 (Uniqueness of scalars). For any term t, any context Γ, any scalars α and β and any
unit types U and V , if Γ ` t :α.U and Γ ` t :β.V , then α = β.

Proof. Structural induction over t.

1. t = 0. Then by Lemma 3.2.17, α = β = 0.

2. t = x or t = λx.t′. Then by Lemma 3.2.16, α = β = 1.

3. t = γ.t′. Then by Lemma 3.2.15, ∃σ, δ, U ′, V ′, such that α.U ≡ γ.σ.U ′ and β.V ≡ γ.δ.V ′. If γ = 0,
then γ × σ = γ × δ = 0 and then by Lemma 3.2.3, α = β = 0. If γ 6= 0, then by Lemma 3.2.10,
Γ ` t′ : σ.U ′ and Γ ` t′ : δ.V ′, so by the induction hypothesis σ = δ. Notice that, by Lemma 3.2.3,
α = γ × σ and β = γ × δ, so α = γ × σ = γ × δ = β.

4. t = t1+t2. Then by Lemma 3.2.12, ∃γ1, γ2 such that Γ ` t1 : γ1.U and Γ ` t2 : γ2.U with γ1+γ2 = α;
and also by the same Lemma, ∃δ1, δ2 such that Γ ` t1 : δ1.V and Γ ` t2 : δ2.V with δ1 + δ2 = β.
Then by the induction hypothesis γ1 = δ1 and γ2 = δ2, so α = γ1 + γ2 = δ1 + δ2 = β.

5. t = (t1) t2. Then by Lemma 3.2.8, ∃γ1, γ2,W and T � U such that Γ ` t1 : γ1.W → T and
Γ ` t2 : γ2.W with γ1 × γ2 = α; and also by the same Lemma, ∃δ1, δ2,W ′ and R � V such that
Γ ` t1 : δ1.W

′ → R and Γ ` t2 : δ2.W
′ with δ1 × δ2 = β. Then by the induction hypothesis γ1 = δ1

and γ2 = δ2, so α = γ1 × γ2 = δ1 × δ2 = β.
�

From this theorem, the uniqueness of 0 comes out, in the sense that no term can have type 0 and some
other type T which is not equivalent to 0.

Corollary 3.2.19 (Uniqueness of 0). For any term t and any context Γ, Γ ` t : 0⇒ ∀T 6≡ 0,Γ 6` t :T .

Proof. Assume Γ ` t :T , then by Lemma 3.2.2, T ≡ α.U . Since Γ ` t : 0 ≡ 0.U , then by Theorem 3.2.18,
α = 0. �

Since 0 has type 0 which is equivalent to 0.U for any U , 0 can still act as argument for an abstraction,
or even be applied to another term. In either case the result will be a term of type 0:

Lemma 3.2.20 (Linearity of 0). For any term t, any context Γ and any type T ,
1. Γ ` (0) t :T ⇒ T ≡ 0. 2. Γ ` (t) 0 :T ⇒ T ≡ 0.

Proof.

1. Let Γ ` (0) t :T . By Lemma 3.2.2, T ≡ γ.U . Moreover, by Lemma 3.2.8, ∃α, β, U ′ and R � U such
that Γ ` 0 : β.U ′ → R and Γ ` t :α.U ′ with γ = α × β. Hence, by Corollary 3.2.19, β.U ′ → R ≡
0 ≡ 0.U , so by Lemma 3.2.3, β = 0, then γ = α× 0 = 0, so T ≡ γ.U ≡ 0.

2. Analogous to 1.
�

26

3. A type system accounting for scalars

Subject reduction cases

The following three lemmas are in fact cases of subject reduction, however, they will also be necessary as
lemmas in subsequent proofs.

Lemma 3.2.21 (Product). For any term t, any scalars α and β and any context Γ, Γ ` α.(β.t) : T ⇒
Γ ` (α× β).t :T .

Proof. By Lemma 3.2.15, ∃U ∈ U , γ ∈ S such that T ≡ α.γ.U . Cases:

α 6= 0 and β 6= 0: By Lemma 3.2.10, Γ ` β.t : γ.U . Moreover, by Lemma 3.2.15 again, ∃U ′ ∈ U , γ′ ∈ S
such that γ.U ≡ β.γ′.U ′. So, by Lemma 3.2.10, Γ ` t : γ′.U ′, from which, using rule sI one can
derive Γ ` (α× β).t : (α× β).γ′.U ′. Notice that (α× β).γ′.U ′ ≡ α.β.γ′.U ′ ≡ α.γ.U ≡ T .

α = 0: By Lemma 3.2.11, ∃R such that Γ ` β.t :R. Then by Lemma 3.2.10 or 3.2.11, depending if β = 0
or not, ∃S such that Γ ` t :S, from which, using rule sI , one can derive Γ ` 0.t : 0.S. Notice that
0.S ≡ 0 ≡ 0.γ.U ≡ T . Also notice that 0.t = (0× β).t.

�

Lemma 3.2.22 (Distributivity). For any terms t and r, any scalar α, any context Γ and any type T ,
Γ ` α.(t + r) :T ⇒ Γ ` α.t + α.r :T .

Proof. Let Γ ` α.(t + r) :T . By Lemma 3.2.15, ∃α,R such that T ≡ α.R. Cases

α 6= 0: By Lemma 3.2.10, Γ ` t+ r :R. Since R ≡ 1.R, by Lemma 3.2.12, Γ ` t : δ.R and Γ ` r : γ.R with
δ + γ = 1. Then by rules sI and ≡, Γ ` α.t : (α × δ).R and Γ ` α.r : (α × γ).R, from which using
rule +I one can derive Γ ` α.t+α.r : (α× δ+α× γ).R. Notice that (α× δ+α× γ).R = α.R ≡ T .

α = 0: Then T ≡ 0.R ≡ 0 and by Lemma 3.2.11, ∃S such that Γ ` t+r :S. In addition, by Lemma 3.2.2,
∃δ, V such that S ≡ δ.V . Then by Lemma 3.2.12, ∃σ, ς such that Γ ` t :σ.V and Γ ` r : ς.V . By rules
sI and ≡, Γ ` 0.t : 0.V and Γ ` 0.r : 0.V , from which using rule +I one can derive Γ ` 0.t+ 0.r : 0.V .
Notice that 0.V ≡ 0 ≡ T .

�

Lemma 3.2.23 (Factorisation). For any term t, scalars α and β, type T and context Γ, Γ ` α.t+β.t :T ⇒
Γ ` (α+ β).t :T .

Proof. Let Γ ` α.t + β.t : T . By Lemma 3.2.12, ∃δ, γ ∈ S such that Γ ` α.t : δ.T and Γ ` β.t : γ.T with
δ + γ = 1. In addition, by Lemma 3.2.2, ∃U ∈ U and σ ∈ S such that T ≡ σ.U . Then Γ ` α.t : δ.σ.U
and Γ ` β.t : γ.σ.U . Then by Lemma 3.2.15, ∃φ, ϕ ∈ S and U ′, U ′′ ∈ U such that δ.σ.U ≡ α.φ.U ′ and
γ.σ.U ≡ β.ϕ.U ′′. So, by Lemma 3.2.3, δ × σ = α× φ and γ × σ = β × ϕ. Cases

σ = 0: Then T ≡ 0, and so one can derive Γ ` α.t :α.0. Thus by Lemma 3.2.10, Γ ` t : 0. Using rules sI
and ≡, one can derive Γ ` (α+ β).t : 0.

σ 6= 0, δ = 0: Then since δ + γ = 1, γ = 1, and so Γ ` β.t : T ≡ β.ϕ.U ′′, then by Lemma 3.2.10,
Γ ` t :ϕ.U ′′. Using rules sI and ≡, one can derive Γ ` (α + β).t : ((α + β) × ϕ).U ′′. Since δ = 0,
the possible cases are:

α = 0: Then ((α+ β)× ϕ).U ′′ ≡ (β × ϕ).U ′′ ≡ σ.U ≡ T .
α 6= 0: Then, since Γ ` α.t : 0 ≡ α.0, by Lemma 3.2.10, Γ ` t : 0. In addition, as Γ ` β.t : β.ϕ.U ′′,

by Lemma 3.2.10, Γ ` t :ϕ.U ′′, then by Corollary 3.2.19, ϕ.U ′′ ≡ 0, so ϕ = 0, and then γ = 0,
so δ = 1, which is a contradiction.

σ 6= 0, γ = 0: Analogous to previous case.

α, β, φ, ϕ 6= 0: Then by Lemma 3.2.3, U ≡ U ′ ≡ U ′′. Then Γ ` α.t :α.φ.U and Γ ` β.t : β.ϕ.U . Hence
by Lemma 3.2.10, Γ ` t : φ.U and Γ ` t :ϕ.U . Then by Theorem 3.2.18, φ = ϕ and then by rule
sI , one can derive Γ ` (α + β).t : (α + β).φ.U . Notice that (α + β).φ.U ≡ ((α + β) × φ).U =
(α× φ+ β × ϕ).U = (δ × σ + γ × σ).U = ((δ + γ)× σ).U = (1× σ).U = σ.U ≡ T .

�

27

3. A type system accounting for scalars

3.2.2 Subject reduction proof
Now we are able to prove the subject reduction property (Theorem 3.2.1).

Proof. We proceed by checking that every reduction rule preserves the type. We give two cases as
example, the full proof can be find in Appendix B.12.

rule (t + r) u→ (t) u + (r) u: Let Γ ` (t+r) u :T ≡ 1.T . Then, by Lemma 3.2.8, ∃α, β, U and T ′ � T
such that Γ ` u :α.U and Γ ` t+r :β.U → T ′ ≡ 1.β.U → T ′ with α×β = 1. Then by Lemma 3.2.12,
∃δ and γ such that Γ ` t : δ.β.U → T ′ ≡ (δ × β).U → T ′ and Γ ` r : γ.β.U → T ′ ≡ (γ × β).U → T ′

with δ + γ = 1. Then by rule →E , Γ ` (t) u : (δ × β × α).T ′ and Γ ` (r) u : (γ × β × α).T ′.
Notice that (δ × β × α).T ′ = (δ × 1).T ′ = δ.T ′ and (γ × β × α).T ′ = (γ × 1).T ′ = γ.T ′. Then
by Lemmas 3.2.5 and 3.2.7 Γ ` (t) u : δ.T and Γ ` (r) u : γ.T , from which, using rule +I , one can
derive Γ ` (t) u + (r) u : (δ + γ).T ≡ T .

rule (λx.t) b→ t[b/x]: Let Γ ` (λx.t) b : T . By rule ≡, Γ ` (λx.t) b : 1.T , so by Lemma 3.2.8,
∃α, β, U, T ′ � T such that Γ ` λx.t : β.U → T ′ and Γ ` b : α.U with α × β = 1. Since b is a
base term, by Lemma 3.2.16, α = 1 and so β = 1. Then by Corollary 3.2.14, Γ, x :U ` t :T ′. Thus,
by Lemma 3.2.13, Γ ` t[b/x] :T ′, from which, by Lemma 3.2.7, one obtains Γ ` t[b/x] :T .

�

3.3 Strong normalisation, simplified reduction rules and conflu-
ence

The Scalar type system will now be proved to have the strong normalisation property, i.e. every typable
term is strongly normalising, it cannot reduce forever. In order to show this we first set up another
type system, which simply ‘forgets’ the scalars. Hence this simpler type system is just a straightforward
extension of System F to λlin , which we call λ2la (definition 3.3.1). In the literature surrounding not
λlin but its cousin, the algebraic λ-calculus, one finds such a System F in [Ehrhard, 2010], which extends
the simply typed algebraic λ-calculus of [Vaux, 2007, 2009] – our λ2la is very similar. Secondly we prove
strong normalisation for it (Theorem 3.3.8). Thirdly we show that every term which has a type in Scalar
has a type in λ2la (Lemma 3.3.10), which entails strong normalisation in Scalar (Theorem 3.3.11).

This strong normalisation proof constitutes the second main technical contribution of the chapter.
The confluence of a simplified version of λlin is proven as a corollary.

In this section we use the following notation: T(λ2la) is the set of types of λ2la. Λ is the set of terms
of λlin . Γ t :T says that it is possible to derive the type T ∈ T(λ2la) for the term t ∈ Λ in the context
Γ under the typing rules of λ2la. We just use ` for Scalar . In addition, we use Name/ to distinguish the
names of the typing rules in λ2la from those of Scalar .

Definition 3.3.1. The type grammar of λ2la is the following:

A,B,C = X | A→ B | ∀X.A

The typing rules of λ2la are those of System F plus the following rules:

ax/0
Γ 0 :A

Γ t :A Γ r :A
+/
I

Γ t + r :A

Γ t :A
s/I

Γ α.t :A

In order to prove strong normalisation we extend the proof for λ2. The standard method was invented
by Tait [Tait, 1967] for simply typed λ-calculus and generalised to System F by Girard [Girard, 1972].
Our presentation follows [Barendregt, 1992, Section 4.3]. The following definitions are taken from this
reference – with slight modifications to handle the extra λ2la rules.

The strong normalisation property entails that every term is strongly normalising, so first we define
the set of strongly normalising terms.

Definition 3.3.2. SN = {t ∈ Λ | t is strongly normalising}.

The notion of closure is often captured by the notion of saturated set. We use the notation ~t =
t1, . . . , tn with n ≥ 0. Also (r) ~t = (((r) t1) . . .) tn where if n = 0 it is just r.

28

3. A type system accounting for scalars

Definition 3.3.3.

1. A subset X ⊆ SN is called saturated if

(a) 0 ∈ X;

(b) ∀x,~t ∈ SN , (x) ~t ∈ X;

(c) (t[b/x]) ~r ∈ X ⇒ ((λx.t) b) ~r ∈ X;

(d) (∀i ∈ I, (ti) ~r ∈ X)⇒ (
∑
i∈I ti) ~r ∈ X;

(e) (∀i ∈ I, ((u) ti) ~r ∈ X)⇒ ((u)
∑
i∈I ti) ~r ∈ X;

(f) ∀α ∈ S, t ∈ X ⇔ α.t ∈ X;

(g) α.((((t1) t2) . . .) tn) ∈ X ⇔ (((((t1) t2) . . .) α.tk) . . .) tn ∈ X (1 ≤ k ≤ n);

(h) ∀~t ∈ SN , (0) ~t ∈ X;

(i) ∀t, ~u ∈ SN , ((t) 0) ~u ∈ X.

2. SAT = {X ⊆ Λ | X is saturated}

The basic idea is to prove that types correspond to saturated sets. In order to achieve this, we define
a valuation from types to SAT (in fact, from type variables to SAT and then, we define a set in SAT
by using such a valuation).

Definition 3.3.4.

1. A valuation in SAT is a map ξ :V→ SAT , where V is the set of type variables.

2. For any A,B ⊆ Λ, we define A→ B = {t ∈ Λ | ∀r ∈ A, (t) r ∈ B}.

3. Given a valuation ξ in SAT , we define for every T ∈ T(λ2la) a set [[T]]ξ ⊆ Λ as follows:

[[X]]ξ = ξ(X), where X ∈ V
[[A→ B]]ξ = [[A]]ξ → [[B]]ξ

[[∀X.A]]ξ =
⋂

Y ∈SAT
[[A]]ξ(X:=Y)

Lemma 3.3.5.

1. SN ∈ SAT ,

2. A,B ∈ SAT ⇒ A→ B ∈ SAT ,

3. Let {Ai}i∈I be a collection of members of SAT ,
⋂
i∈I Ai ∈ SAT ,

4. Given a valuation ξ in SAT and a A in T(λ2la), then [[A]]ξ ∈ SAT .

Proof. cf. Appendix B.13. �

Just like in definition 3.3.4, we define another valuation, this time from term variables to base terms.
We use it to check what happens when we change every free variable of a term for any other base term.
The basic idea is the following: we define ρ, ξ � t :A to be the property of changing every free term
variable in t for another term with the help of the valuation ρ (a base term, since term variables only
run over base terms) and still having the resulting term in the set [[A]]ξ. So, we define Γ � t :A to be the
same property, when the property holds for every pair in Γ and for every valuations ρ and ξ.

This is formalised in the following definition (definition 3.3.6) and with this definition, we prove that
if a term has a type in a valid context, then the property above holds (Theorem 3.3.7), which will yield
the strong normalisation theorem (Theorem 3.3.8) via the concept of saturated set (because saturated
sets are subsets of SN).

Definition 3.3.6.

29

3. A type system accounting for scalars

• A valuation in Λ is a map ρ : V → Λb, where V is the set of term variables and Λb = {b ∈
Λ | b is a base term}.

• Let ρ be a valuation in Λ. Then [[t]]ρ = t[x1 := ρ(x1), . . . , xn := ρ(xn)], where ~x = x1, . . . , xn is the
set of free variables in t.

• Let ρ be a valuation in Λ and ξ a valuation in SAT . Then

– ρ, ξ satisfies t :A, notation ρ, ξ � t :A⇔ [[t]]ρ ∈ [[A]]ξ.

– ρ, ξ � Γ⇔ ρ, ξ � x :A for all x :A in Γ

– Γ � t :A⇔ ∀ρ, ξ [ρ, ξ � Γ⇒ ρ, ξ � t :A].

Theorem 3.3.7 (Soundness). Γ t :A⇒ Γ � t :A.

Proof. We proceed by induction on the derivation of Γ t : T . We show one case as example. The full
proof is in Appendix B.14.

Γ t :A→ B Γ r :A
→/
E

Γ (t) r :B

By the induction hypothesis, Γ � t :A→ B and Γ � r :A. Assume
ρ, ξ � Γ in order to show ρ, ξ � (t) r :B. Then ρ, ξ � t :A → B,
i.e. [[t]]ρ ∈ [[A → B]]ξ = [[A]]ξ → [[B]]ξ and [[r]]ρ ∈ [[A]]ξ. Then
[[(t) r]]ρ = [[t]]ρ [[r]]ρ ∈ [[B]]ξ, so ρ, ξ � (t) r :B.

�

Theorem 3.3.8 (Strong normalisation for λ2la). Γ t :A⇒ t is strongly normalising.

Proof. Let Γ t :A. Then by Theorem 3.3.7, Γ � t :A. Define ρ0(x) = x for all x and let ξ be a
valuation in SAT. Then ρ0, ξ � Γ (i.e. for all (x :B) ∈ Γ, ρ0, ξ � x :B since x ∈ [[B]]ξ holds because [[B]]ξ
is saturated). Therefore ρ0, ξ � t :A, hence t = [[t]]ρ0 ∈ [[A]]ξ ⊆ SN . �

It is possible to map every type from Scalar to a type in λ2la as follows.

Definition 3.3.9. Let (·)\ : T → T(λ2la) be the following mapping:

• X\ = X • (∀X.T)\ = ∀X.T \ • (U → T)\ = U \ → T \ • (α.T)\ = T \ • 0
\

= A

with A ∈ T(λ2la).

We also use the following abuse of notation Γ\ = {(x :T \) | (x :T) ∈ Γ}.
The following lemma ensures that if it is possible to give a type to a term in Scalar then it is possible

to give to the term the mapped type in λ2la.

Lemma 3.3.10 (Correspondence with λ2la). Γ ` t :T ⇒ Γ\ t :T \.

Proof. We proceed by induction on the derivation of Γ ` t : T . We show one case as example. The full
proof is in Appendix B.15.

Γ ` t :α.T Γ ` r :β.T
+I

Γ ` t + r : (α+ β).T

By the induction hypothesis Γ\ t :T \ and Γ\ r :T \, so by rule
+/
I , Γ\ t + r :T \ = ((α+ β).T)\.

�

Strong normalisation arises as a consequence of strong normalisation for λ2la and the above lemma.

Theorem 3.3.11 (Strong normalisation). Γ ` t :T ⇒ t is strongly normalising.

Proof. By Lemma 3.3.10, Γ\ t :T \, then by Theorem 3.3.8, t is strong normalising. �

Taking up again the example of Section 1.2, diverging terms like Y are simply not allowed in this
typed setting, since Theorem 3.3.11 will ensure that all the typable terms have a normal form. So we do
not have infinities, and hence the intuitive reasons for having restrictions (∗) on the Factorisation rules
of the Linear-algebraic calculus (cf. the reduction rules in Section 1.2) have now vanished. If we drop
them, the example becomes as follows.

30

3. A type system accounting for scalars

Example 3.3.12. Consider some arbitrary typable, and hence normalising term t. Then α.t− α.t can
be reduced by a factorisation rule into (α−α).t. This reduces in one step to 0, without the need to reduce
t.

It turns out that, in general, for typable terms we can indeed drop the restrictions (*) and (**) without
breaking the confluence of λlin . These restrictions were there only due to the impossibility of checking
for the normalisation property in the untyped setting. In fact the confluence becomes a corollary of the
strong normalisation theorem.

Corollary 3.3.13 (Confluence). Let t be a term of λlin , as it appears in Figure 1.1, but without restric-
tions (*) and (**). If t is typable in Scalar, and t →∗ u and t →∗ r, then there exists a term t′ such
that u→∗ t′ and r→∗ t′.

Proof. First let us introduce some notation. Let →β be a β-reduction and →a any reduction from
Figure 1.1 but the β-reduction, without restrictions (*) and (**).

The proof follows in several steps.

1. First we prove local confluence for the algebraic fragment, i.e. if t →a u and t →a r, then there
exists a term t′ such that u→∗a t′ and r→∗a t′.

2. Then we prove local confluence for the β-reduction, i.e. if t →β u and t →β r, then there exists a
term t′ such that u→∗β t′ and r→∗β t′.

3. Finally, we prove that algebraic rules and β-reduction commutes, i.e. if t →a u and t →β r, then
there exists a term t′ such that u→∗ t′ and r→∗ t′, where →∗ is a reduction sequence of zero or
more steps involving any rules.

This proves the local confluence of the system. Local confluence plus strong normalisation implies con-
fluence (cf. for example [TeReSe, 2003]).

Let proceed with the proofs.

1. Valiron did a semi-automatised proof in the interactive theorem prover Coq [Coq Dev. Team, 2009].
The interested reader can find the proof in [Valiron, 2011b].

2. The confluence of the β-reduction is a trivial extension of the confluence of lambda-calculus.

3. This proof goes by structural induction. cf. Appendix B.16.
�

Notice that the proofs of subject reduction (Theorem 3.2.1) and strong normalisation (Theorem 3.3.11)
have been done in the general case, without consider restrictions (*) and (**), so they are still valid for
the simplified calculus.

Having dropped restrictions (*) and (**) is an important simplification of the linear-algebraic λ-
calculus, which becomes really just an oriented version of the axioms of vector spaces [Arrighi and
Dowek, 2004] together with a linear extension of the β-reduction (i.e. restriction (***) remains of course,
which makes this calculus to be call-by-base and all functions remain linear in their arguments, in the
sense of linear-algebra).

3.4 Barycentric λ-calculus

By slightly modifying our system, the Scalar type system may be used in order to specialise λlin into
a higher-order barycentric calculus. In order to illustrate this point, let us consider the following type
judgement, which can be obtained from scalar:

f ::= λx.(((x) (
1

2
.(true + false))) (

1

4
.true +

3

4
.false)) :B→ B;

where B stands for ∀X.X → X → X. Notice that the type B has true, false, and linear combinations of
them with scalars summing to one, as members. In this example the type system provides a guarantee

31

3. A type system accounting for scalars

that the function is barycentric, and that if it receives a barycentric argument, it preserves this property.
For example, if we apply such a function to 1

2 .(true + false) we obtain:

(f) (
1

2
.(true + false)) −→∗ 3

8
.true +

5

8
.false.

Although this seems feasible, we will not develop a full-blown barycentric higher-order λ-calculus and
associated properties in this thesis. We will just show that the scalar type system accomplishes part
of the job by checking for the barycentric property, i.e. checking that the normal form of a term has
amplitudes summing to one. A barycentric λ-calculus fragment of the algebraic λ-calculus has already
been studied for its own sake [Tasson, 2009], however in this work the calculus was endowed with a simple
type system, not one that would recognise barycentric terms amongst other terms.

To this end let us define a type system with the rules and grammar of Scalar , but where the valid
types are the classic ones (i.e. types exempt of any scalar, which we have referred to as T(λ2la) in
Definition 3.3.1), whilst all the other types are just intermediate types:

Definition 3.4.1. We define the type system B for the barycentric calculus to be the Scalar type system
with the following restrictions:

• S = R,

• Contexts are sets of tuples (x :A), with A ∈ T(λ2la),

• Type variables run over T(λ2la) instead of unit types, i.e. the rule ∀E accepts only A ∈ T(λ2la),

• The final sequent have to be well-formed in the following sense: ∀A ∈ T(λ2la), any derivable sequent
Γ ` t :A is well-formed, even if the derivation has scalars appearing at intermediate stages.

In order to show that this type system does the job, let us define the weight function which checks for
the barycentric property:

Definition 3.4.2. Let ω : Λ→ R be a function defined inductively by:

ω(0) = 0; ω(b) = 1; ω(t1 + t2) = ω(t1) + ω(t2); ω((t1) t2) = ω(t1)× ω(t2); ω(α.t) = α× ω(t)

where b is a base term.

We can enunciate the following theorem which shows that every term with a well-formed typing in
the type system B reduces to a term with weight 1:

Theorem 3.4.3 (Normal-form of terms in B have weight 1). Let Γ ` t :A be well-formed, then ω(t↓) = 1.

Proof. Instead, we prove the more general case: Γ ` t :α.A⇒ ω(t↓) = α, by structural induction on t↓.
We take Γ ` t↓ :α.A, which is true by Theorem 3.2.1. We show one case as example. The full proof is in
Appendix B.17.

Take the case t ↓= γ.t′. Then ω(t ↓) = γ.ω(t′). By Lemma 3.2.15, ∃U ∈ U , δ ∈ S such that
α.A ≡ γ.δ.U . Notice that T(λ2la) ⊆ U , so by Lemma 3.2.3, α = γ × δ. We consider two cases:

α = 0: Then either γ = 0, and so ω(γ.t′) = 0× ω(t′) = 0, or γ 6= 0 but δ = 0, and so by Lemma 3.2.10,
Γ ` t′ : 0.U ≡ 0.A, so by the induction hypothesis ω(t′) = 0, and then ω(γ.t′) = γ × 0 = 0.

α 6= 0: Then A ≡ U , so by Lemma 3.2.10, Γ ` t′ : δ.A. Then by the induction hypothesis ω(t′) = δ.
Notice that ω(t↓) = γ × ω(t′) = γ × δ = α.

�

Remark 3.4.4.

• By Proposition 1.2.2, closed normal terms have form
n∑
i=1

αi.λx.ti +

m∑
j=1

λx.uj

Thus the Theorem 3.4.3 entails that
∑n
i=1 αi +m = 1. Hence the type system B, an easy variation

of the Scalar type system, checks for the barycentric property, i.e. it checks that a given term will
reduce to a barycentric distribution of terms.

32

3. A type system accounting for scalars

• It is easy to prove that

z : A,w : A ` ((2.λx.λy.
1

4
.x+

1

4
.y) z) w :A.

But notice that ω(((2.λx.λy. 14 .x+ 1
4 .y) z) w) = 2, even when ((2.λx.λy. 14 .x+ 1

4 .y) z) w →∗ 1
2 .z+ 1

2 .w,
whose weight is equal to one. So, a priori this ω function cannot tell us that this term will yield
a barycentric term. However the fact that has type A in T(λ2la), according to the Theorem 3.4.3,
anticipates this result.

• One might think that unit types U are just as good as barycentric types B for the sake of obtain-
ing Theorem 3.4.3, via a combination of Subject-reduction and the uniqueness of scalars property
(cf. Theorem 3.2.18). This is only morally true, here is a counter-example:

x : U → 2.U, y : U ` (x)
1

2
.y : U but ω((x)

1

2
.y) =

1

2

But the more significant difference between U and B is one of composability: the application of a
term of unit type to another is not necessarily of unit type; whereas barycentric types, on the other
hand, are preserved under application. Thus terms in B are not only barycentric; they can also be
viewed as barycentric-preserving functions.

3.5 Conclusion and open questions
In summary, we have defined a System F -like type system for an extension of λlin , a λ-calculus which
allows making arbitrary linear combinations of λ-calculus terms α.t + β.u. This Scalar type system is
fine-grained in that it keeps track of the ‘amount of a type’, i.e. the type of terms contain a scalar which
is the sum of the amplitudes of the terms which contribute to the type.
Our main technical contributions were:

• A proof of the subject reduction property of this Scalar type system (Theorem 3.2.1). This came
out after having proven a set of lemmas related to the equivalence relation intrinsic to the types,
and another set of lemmas explaining how the scalars within the types are related to the scalars
within the terms. Once all of the important properties were known, we were able to use them to
decompose and recompose any term before and after applying a reduction rule, so as to show that
every reduction rule preserves the types.

• A proof of the strong normalisation property of this Scalar type system (Theorem 3.3.11). The
technique used to prove the strong normalisation property was by proving that such property would
hold for a simpler system, and then to show the correspondence between the two systems.

• A proof that under strong normalisation, most of the conditions upon the λlin reduction rules can
be lifted (e.g. allowing the factorisation not only of closed normal terms but of any term) without
jeopardising confluence, thereby simplifying the λlin language.

• A proof that the Scalar type system can be used to check that a term has the barycentric property,
i.e. that the amplitudes of its normal form are summing to one.

Arguably a denotational semantics approach might have led to less syntactic proofs of the properties of
the type system, sustained by the guiding intuition about an underlying mathematical space. On the
other hand, the complexity of the proofs in this chapter is largely due to the large number of rules (16
rules plus associativity and commutativity of +). Moreover the issue of models of (Linear-)Algebraic
λ-calculus is a challenging, active topic of current research. We know of the categorical model of simply
typed λlin [Valiron, 2010], and the finiteness space model of simply typed Algebraic λ-calculus [Ehrhard,
2005, Tasson, 2009]. Moreover, even if both calculi simulate each other (cf. Chapter 2), it is not clear
whether the translation applies at the level of models. Hence known models are intricate and tend not to
cover the set of terms under consideration in this chapter. Notice also that since the models of untyped
λ-calculus are uncountable, the models of (Linear-)Algebraic λ-calculus are likely to be vector space of
uncountable dimension. These are fascinating, open questions.

33

3. A type system accounting for scalars

34

Chapter 4

Introducing sums of types

Résumé du Chapitre

Nous définissons le fragment additif de λlin . Nous définissons également un système de types
qui inclut les sommes de types comme un reflet de celles présentes dans les termes. Après avoir
prouvé la propriété de préservation du type par réduction, nous étudions le rôle des sommes
dans le calcul via l’interprétation de notre système dans le Système F avec des paires. Nous
montrons que ce calcul peut être interprété comme le Système F avec un constructeur de paires
associatives et commutatives, et distributives par rapport aux applications. La normalisation
forte de notre système dérive de cette interpretation.

Avariant of the algebraic λ-calculi consists on adding sums to the pure λ-calculus. This amounts
to an algebraic λ-calculus where coefficients are natural number. The only difference is that some
reductions may happen ‘faster’ with coefficients: e.g. if t → t′, then 2.t → 2.t′, but t + t →

t′ + t → t′ + t′. Notice that this contrasts with the purely non-deterministic setting [de’Liguoro and
Piperno, 1995] and its ‘choice’ operator, where 1 + 1 is equal to 1.

Most presentations of calculi associated with differential linear logic, e.g. [Ehrhard and Regnier,
2003, Pagani and Rocca, 2010, Pagani and Tranquilli, 2009], are carried out in the Boolean setting or
without coefficients (or with the possibility of introducing coefficients only mentioned as an aside). Other
examples, with slight differences, are Bouldol’s parallel λ-calculus [Boudol, 1994], and other probabilistic
extensions of calculi [Bournez and Hoyrup, 2003, Di Pierro, Hankin, and Wiklicky, 2005, Herescu and
Palamidessi, 2000].

Therefore the λ-calculus with sums, but without scalars, becomes the most basic object of study.
Hence it was natural to try to understand the behaviour of sums in the context of λlin . To this end we
have isolated a fragment of λlin with sums only (without scalars). We call it λadd. We have endowed it
with an intuitive type system, Additive, and proved its subject reduction.

The first attempt was to interpret Additive in a fragment of the multiplicative exponential linear logic,
however it appeared that the target fragment was not linear, in the sense of linear logic (exponentials
appeared all over the types in the translation). In fact the linearity of λlin that allows distributing
application over sums, does not seem to be the same linearity found in linear logic.

Consequently, we adapted the translation in order to interpret Additive in System F with pairs. The
key idea is that the distribution of application over sums is performed during the translation, and then
β-reduction is made within the usual λ-calculus with pairs. The translation says that whenever a term
has a type in Additive, its translation has a type in System F with pairs. It is also true that it is possible
to translate back the translated terms, and obtain the same we started with. We relate the reductions
in Additive with those in System F with pairs in order to use the strong normalisation of System F
to ensure the same property in Additive. The confluence of the typed λadd is a corollary of the local
confluence and the strong normalisation.

Plan of the chapter. Section 4.1 defines λadd, the additive fragment of λlin and its type system
Additive. Section 4.2 proves the subject reduction property in this setting. Section 4.3 is the core
of this chapter. First, Section 4.3.1 introduces Addstruct, a simplification of Additive, which does not

35

4. Introducing sums of types

consider AC-equivalences nor neutrality of 0 within types. It is shown to be nevertheless equivalent to
Additive. Then, in Section 4.3.2 the System F with pairs is presented and in Sections 4.3.3 and 4.3.4,
an interpretation of Additive in it is set up, using Addstruct as an intermediate step. Section 4.3.5 proves
the strong normalisation and confluence of our system by taking advantage of its relation with System F
with pairs. Section 4.4 concludes.

4.1 The Additive Type System for λadd

The λadd calculus, cf. Figure 4.1, is a purely additive fragment of λlin , cf. Figure 1.1. The scalars have
been removed from the grammar and the rewriting rules involving have been removed also. In addition
to β-reduction, there remain five rules, specifying the behaviour of +: application distributes over it, and
0 is absorbing with respect to application and neutral with respect of sums.

Terms: t, r,u ::= b | (t) r | 0 | t + r
Basis terms: b ::= x | λx.t

Distributivity rules: Zero rules: β-reduction:
(u + t) r→ (u) r + (t) r (0) t→ 0 (λx.t) b→ t[b/x]
(r) (u + t)→ (r) u + (r) t (t) 0→ 0

t + 0→ t

Figure 4.1: Syntax and reduction rules of λadd

The grammar of types, cf. Figure 4.2, is analogous to the grammar of Scalar cf. Figure 3.1. We
slightly simplify this scheme and do not allow ∀X.T for general T but only for unit types. Notice that in
Scalar it is morally the case, since there is the equivalence ∀X.α.T ≡ α.∀X.T . The analogous equivalence
in Additive would be ∀X.(T +R) ≡ ∀X.T + ∀X.R which would be unusual, since it would allow each ∀X
to be replaced by different types. Instead we choose to restrict the universal quantifier to unit types.

We define an equivalence relation ≡ on types as follows

Definition 4.1.1. For any types T , R and S, we define the type equivalence ≡ to be the least congruence
such that:

• T +R ≡ R+ T • T + (R+ S) ≡ (T +R) + S • T + 0 ≡ T

Within this equivalence, it makes sense to use the following notation:

0∑
i=1

T = 0 ;

α∑
i=1

Ti =

α−1∑
i=1

Ti + Tα if α ≥ 1

Notice that it could be also possible to use the notation
∑α
i=1 T = α.T , when all the types T are the

same, however it may induce some confusion with Scalar , so we chose to avoid such a notation in this
Chapter.

Remark 4.1.2. Notice that every type is equivalent to a sum of unit types.

Typing rules are also given in Figure 4.2. Rules for the universal quantifier, axiom and introduction
of arrow are the usual ones. Any sum of typable terms can be typed using rule +I . Notice that there is
no elimination rule for +. An arrow elimination in this setting may seen complex: a direct analogous to
the arrow elimination from Scalar , cf. Figure 3.1, would be of the form

Γ ` t :

α∑
i=1

U → T Γ ` r :

β∑
j=1

U

Γ ` (t) r :

α∑
i=1

β∑
j=1

T

36

4. Introducing sums of types

Types: T,R, S ::= U | T +R | 0
Unit types: U, V,W ::= X | U → T | ∀X.U

ax
Γ, x :U ` x :U

ax0
Γ ` 0 : 0 Γ ` t :

α∑
i=1

(U → Ti) Γ ` r :

β∑
j=1

U

→E

Γ ` (t) r :

α∑
i=1

β∑
j=1

Ti

Γ, x :U ` t :T
→I

Γ ` λx.t :U → T

Γ ` t :∀X.U
∀E

Γ ` t :U [V/X]

Γ ` t :T Γ ` r :R
+I

Γ ` t + r :T +R

Γ ` t :T T ≡ R
≡

Γ ` t :R

Γ ` t :U X /∈ FV (Γ)
∀I

Γ ` t :∀X.U

Figure 4.2: Types and typing rules of Additive

where the scalars α and β in the →E rule of Scalar have been replaced by
∑α
i=1 and

∑β
j=1. However,

notice that this restricts the calculus, since all the U → T that are summed have to be the same, and
the same happens with the U , so the term (t1 + t2) (r1 + r2) would be forced to have t1 and t2 with the
same type, and also r1 and r2 with the same type.

One way to gradually relax this restriction is to allow having different T ’s, obtaining to the rule

Γ ` t :

α∑
i=1

U → Ti Γ ` r :

β∑
j=1

U

→E

Γ ` (t) r :

α∑
i=1

β∑
j=1

Ti

Continuing the example, this allows t1 and t2 to have different types, provided that they are arrows
starting with the same type U .

Example 4.1.3. Let Γ ` b1 :U , Γ ` b2 :U , Γ ` λx.t :U → T and Γ ` λy.r :U → R. Then

Γ ` λx.t + λy.r : (U → T) + (U → R) Γ ` b1 + b2 :U + U
→E

Γ ` (λx.t + λy.r) (b1 + b2) :T + T +R+R

Notice that (λx.t + λy.r) (b1 + b2)→∗ (λx.t) b1︸ ︷︷ ︸
T

+ (λx.t) b2︸ ︷︷ ︸
T

+ (λy.r) b1︸ ︷︷ ︸
R

+ (λy.r) b2︸ ︷︷ ︸
R

On the contrary, allowing different U ’s is not so straightforward. On account of the distributivity
rules it is required that all the arrows in the first addend start by a type which has to be the type of all
the addends in the second term. For example, if the given term is (t + r) (b1 + b2), the terms t and r
have to be able to receive the both b1 and b2 as arguments. This could be done by taking advantage
of the polymorphism, however the arrow-elimination rule would become much more complex since it will
have to do both, an arrow-elimination and a forall-elimination at the same time. Instead, we delay this
(needed) choice to the Vectorial type system in Chapter 5, and here we just conserve this restricted
version, which is enough for the aims of the present Chapter.

4.2 Subject reduction
The Additive type system is consistent, in the sense that typing is preserved by reduction. In this section,
we prove the subject reduction property. We adapt the proof of Theorem 3.2.1, the subject reduction of
Scalar .

Theorem 4.2.1 (Subject Reduction). For any terms t, t′, any context Γ and any type T , if t→ t′ then
Γ ` t :T ⇒ Γ ` t′ :T .

37

4. Introducing sums of types

Analogously to what has been done in Section 3.2, this result requires some definitions and lemmas.
We just enunciate them, all the omitted proofs can be found in Appendix C.

Definition 4.2.2 (Relation � on types). For any unit types U1, U2, V and any type variable X,

• write U1 ≺ U2 if either U2 ≡ ∀X.U1, or U1 ≡ ∀X.V and U2 ≡ V [W/X] for some type W .

• � is the reflexive (in terms of the type equivalence) and transitive closure of ≺.

Lemma 4.2.3 (Arrows comparison). For any types T,R and any unit types U, V , if V → R � U → T ,
then there exist ~W, ~X such that U → T ≡ (V → R)[~W/ ~X]. �

As a pruned version of a subtyping system, we can prove the subsumption rule:

Lemma 4.2.4 (�-subsumption). For any context Γ, any term t and any unit types U , V such that
U � V and no free type variable in U occurs in Γ, if Γ ` t :U then Γ ` t :V . �

Proving subject reduction means proving that each reduction rule preserves the type. Thus three
generation lemmas are required: two classical ones, for applications (Lemma 4.2.5) and for abstractions
(Lemma 4.2.6 and its Corollary 4.2.9) and a new one for the sums (Lemma 4.2.7).

Lemma 4.2.5 (Generation lemma (app)). For any Γ, T, t and u, if Γ ` (t) u :T is derivable, then there
are α, β ∈ N0, and some types U (in U), T1, . . . , Tα such that Γ ` t :

∑α
i=1(U → Ti) and Γ ` u :

∑β
j=1 U

with
∑α
i=1

∑β
j=1 Ti � T and each derivation of the typing judgement for t and u smaller than the one

for (t) u. �

Lemma 4.2.6 (Generation lemma (abs)). For any Γ, t and T , if Γ ` λx.t : T is derivable, then there
exist a unit type U and a type R such that Γ, x :U ` t :R and U → R � T . �

Lemma 4.2.7 (Generation lemma (sum)). For any Γ, T , r and u, if Γ ` r + u :T , then there are some
types R,S such that Γ ` r :R and Γ ` u :S with R+S ≡ T and the typing derivations for r and u smaller
than the one for r + u. �

The standard substitution lemma can also be stated in this context.

Lemma 4.2.8 (Substitution). For any Γ, T , U , b and t,

1. Γ ` t :T ⇒ Γ[~U/ ~X] ` t :T [~U/ ~X].

2. { Γ, x :U ` t :T and Γ ` b :U } ⇒ Γ ` t[b/x] :T . �

Corollary 4.2.9 (of Lemma 4.2.6). For any Γ, U , T and t, if Γ ` λx.t :U → T then Γ, x :U ` t :T .

Proof. Analogous to the proof of Corollary 3.2.14: Let Γ ` λx.t :U → T . By Lemma 4.2.6, ∃V,R such that
V → R � U → T and Γ, x :V ` t :R, then by Lemma 4.2.3, ∃ ~W, ~X such that U → T ≡ (V → R)[~W/ ~X]

and so by Lemma 4.2.8, Γ[~W/ ~X], x :V [~W/ ~X] ` t :R[~W/ ~X], i.e. Γ[~W/ ~X], x :U ` t :T .
Notice that if Γ[~W/ ~X] ≡ Γ, then we have finished. In the other case, ~X appears free in Γ. Since

V → R � U → T and Γ ` λx.t : V → R, according to Lemma 4.2.4, U → T can be obtained from
V → R as a type for λx.t; then we would need to use the rule ∀I ; thus ~X cannot appear free in Γ, which
constitutes a contradiction. So, Γ, x :U ` t :T . �

Using ax0 it is easy to see that 0 has type 0, and there is no way to change its type except by rule ≡
(notice that ∀-rules only apply on unit types).

Lemma 4.2.10 (Typing 0). For any Γ, if Γ ` 0 :T then T ≡ 0.

Proof. Trivial: there is only one way to derive a type for 0, and it is using the rule ax0, so the only
possible type for 0 is 0. �

A base term can always be given a unit type.

Lemma 4.2.11 (Base terms in Unit). Let b be a base term, that is a variable or an abstraction.
Then for any Γ and T , Γ ` b :T implies T ≡ U ∈ U .

38

4. Introducing sums of types

Proof. Notice that ∀-rules only produce unit types. So if b is a variable, it has either a type given in the
context, which must be unit, or it gets its type through ∀-rules. If b is an abstraction, it has either a
type given by →I rule, which is unit, or it gets its type through ∀-rules. �

The proof of subject reduction is done by induction on the derivation of t→ t′, similarly to the proof
for Scalar given in Chapter 3. We omit this proof here and place it directly in Appendix C.7.

4.3 Logical Interpretation
In this section, we interpret the Additive type system into System F with pairs (System FP). Superposi-
tion will be interpreted as pairs. Since this product is neither associative nor commutative in System FP ,
we consider at first that the sum operator in Additive also does not have these properties. This involves
a slightly modified type system, that we call Addstruct. We then prove that this modified type system is
equivalent to the original one (Proposition 4.3.7), and then translate every term of Addstruct into a term
of System FP . Finally, we show that this translation is correct with respect to typing (Theorem 4.3.19)
and reduction (Theorem 4.3.21), from where we can prove the strong normalisation property for Additive
(Corollary 4.3.22).

4.3.1 Structured additive type system
The system Addstruct is defined with the same grammar of types as Additive, and the same rules ax,
ax0, →I , +I , ∀I and ∀E . There is no type equivalence, and thereby no commutativity nor associativity
for sums, (also 0 is not neutral for sums). Hence rule →E , has to be precised. To specify what an n-ary
sum is, we introduce a structure of trees for types.

Definition 4.3.1. A tree is given by the following grammar:

T,T′ := ` | Z | S(T,T′)

Intuitively, a label ` represents a unit type, Z stands for 0, and S for the sum. A leaf is given by a finite
word over {l, r} (that describes the path from the root to the leaf, with left or right steps). We call
labelling a function from leaves to unit types. Given a tree T and a labelling s, the type T[s] is defined
inductively by:

`[s] = s(ε) (ε denotes the empty word)
Z[s] = 0

S(T,T′)[s] = T[w 7→ s(lw)] + T′[w 7→ s(rw)]

where w 7→ s(lw) is the function that maps the word w to the result of s evaluated in lw.
This definition is naturally extended to functions s from leaves to types.

Graphical representation. We may use the usual graphical representation of trees:

` =
`

; Z =
Z

; S(T,T′) =
T T’

Example 4.3.2. Within this representation, the tree on the right is

T = S(S(`, S(Z, `)), `).

The third leaf (at the end of the bold path) corresponds to lrr. Writing s to the labelling
{ll 7→ U1, lrr 7→ U2, r 7→ U3}, we get

T[s] = (U1 + (0 + U2)) + U3.

U1

0 U2

U3
By extending the graphical notation, this type might be represented by
the labelled tree on the left.

`

Z `

`

39

4. Introducing sums of types

Conversely, for any type T , there exists a tree TT and a unique labelling sT such that T = TT [sT].
Tree composition is defined as follows:

` ◦ T = T
Z ◦ T = Z

T ◦ Z = Z

S(T1,T2) ◦ T = S(T1 ◦ T,T2 ◦ T) (if T 6=Z)

Intuitively, composing Twith T’ consists of “branching” T’ to each leaf of T, and when this leaf is 0, it
absorbs the tree.

Example 4.3.3. Let T=

` Z

`

and T’=

` Z

. Then T◦T′=

` Z

Z ` Z

An immediate induction (cf. Appendix C.8) ensures that

Lemma 4.3.4. T[w 7→ T′[s]] ≡ T ◦ T′[wv 7→ s(v)] where w denotes a `-leaf of T, and v a `-leaf of T’. �

Now we can give the rule for the arrow elimination in Addstruct:

Γ ` t : T[w 7→ (U→ Tw)] Γ ` u : T′[v 7→ U]

Γ ` (t) u : T ◦ T′[wv 7→ Tw]
→E′

Where wv is a word whose prefix w represents a leaf of T.

Example 4.3.5. The following derivation is correct:

Γ ` t :
(
(U → T1) + (U → T2)

)
+ 0 Γ ` u : U + 0

Γ ` (t) u :
(
(T1 + 0) + (T2 + 0)

)
+ 0

→E′

Graphically, we can represent this rule as follows:
if t has type

U→T1 U→T2

0

and u has type

U 0

, then (t) u has type

T1 0 T2 0

0

Remark 4.3.6. The following informal remark can be made in anticipation of definition 4.3.8: we could
also use labellings that map leaves to base terms, and represent any (closed normal) term by a labelled
tree. Then we could type a term T[wi 7→ bi] with T[wi 7→ Ui] if every bi has type Ui. For example,
` (b1 + 0) + b2 : (U1 + 0) + U2 would be represented as

b1 0

b2 :

U1 0

U2

Conversely, if a term has type T[wi 7→ Ui], it intuitively means that it will reduce on a term T[wi 7→ bi],
with every bi of type Ui. Concerning application, we actually have: if t→∗ T[wi 7→ ti] and u→∗ T[vj 7→
uj], then (t) u →∗ T ◦ T′[wivj 7→ (ti) uj]. As instance, using the same terms as in Example 4.3.5, we
can see that t→∗ (t1 + t2) + 0 (with ti of type U → Ti) and u→∗ b1 + b2 (with bj of type U) imply

(t) u→∗
(

(t1) (b1 + b2) + (t2) (b1 + b2)
)

+ (0) (b1 + b2)
→∗
(

((t1) b1 + (t1) b2) + ((t2) b1 + (t2) b2)
)

+ 0

40

4. Introducing sums of types

with (ti) uj of type Ti. In terms of trees, they remain the same as in Example 4.3.5:
if t reduces on

t1 t2

0

and u on

b1 b2

, then (t) u reduces on

(t1)b1(t1)b2(t2)b1(t2)b2

0

The Additive type system can be seen to be the same as the Addstruct type system up to associativity
and commutativity and neutrality of 0 in the sense of the Proposition 4.3.7.

Proposition 4.3.7 (Additive equivalent to Addstruct).

1. If Γ ` t :T is derivable in Additive, then there is a type T ′ ≡ T such that Γ ` t :T ′ is derivable in
Addstruct.

2. If Γ ` t :T is derivable in Addstruct, then it is also derivable in Additive.

Proof.

1. We proceed by induction on the depth of the derivation of Γ ` t :T in Additive.

• If the last rule that is applied is ax, ax0, →I , +I , ∀I or ∀E , then we can derive the same
judgement in Addstruct using the induction hypothesis and the rule with the same name.

• If the last rule that is used is ≡, then we conclude directly using the induction hypothesis and
transitivity of ≡.

• Assume the typing derivation ends with
Γ ` t :

∑α
i=1(U → Ti) Γ ` u :

∑β
j=1 U

Γ ` (t) u :
∑α
i=1

∑β
j=1 Ti

→E .

By induction hypothesis, there exist T ≡
∑α
i=1(U → Ti) and R ≡

∑β
j=1 U such that Γ ` t :T

and Γ ` u :R are both derivable in Addstruct. So we have T = T[wi 7→ (U → Ti)] (where
each wi is the path to some `-leaf of T) and R = T′[v 7→ U] for some trees T, T’. Then we can
derive in Addstruct

Γ ` t :T[wi 7→ (U → Ti)] Γ ` u :T′[v 7→ U]
→E′

Γ ` (t) u :T ◦ T′[wiv 7→ Ti]

By Lemma 4.3.4, T◦T′[wiv 7→ Ti] ≡ T[wi 7→ T′[v 7→ Ti]]. Then T◦T′[wiv 7→ Ti] ≡
∑α
i=1 T

′[v 7→
Ti] ≡

∑α
i=1

∑β
j=1 Ti.

2. This side is immediate since every derivation rule of Addstruct can be seen as a derivation rule of
Additive, except →E′ that is equivalent to the rules →E and ≡.

�

4.3.2 System F with pairs
We recall the definition of System FP [Di Cosmo, 1995] (Figure 4.3). It will be used to interpret Addstruct.
This system satisfies both the subject reduction and the strong normalisation properties [Di Cosmo, 1995].
We write ΛF for the set of terms of System FP , and we use the notation πi1...in(t) for πi1(πi2(. . . πin(t))).

System FP and trees. We have seen in the previous subsection that a tree can be labelled with unit
types to form a type of Addstruct. It can also be labelled by terms or types of System FP to form a new
term in ΛF or a new type of System FP .

Definition 4.3.8. We call term-labelling a function from leaves to ΛF . Given τ , a term-labelling, and T,
a tree, T[τ] is the term of System FP defined inductively by:

`[τ] = τ(ε)
Z[τ] = ?

S(T,T′)[τ] = 〈T[w 7→ τ(lw)] , T′[w 7→ τ(rw)] 〉

41

4. Introducing sums of types

Terms : t, u := x | λx.t | tu | ? | 〈t, u〉 | π1(t) | π2(t)
Types : A,B := X | A⇒ B | ∀X.A | 1 | A×B
Reduction rules : (λx.t)u→ t[u/x] ; πi(〈t1, t2〉)→ ti
η − equivalence : λx.tx ≡η t if x/∈FV (t) ; 〈π1(p), π2(p)〉 ≡η p
Typing rules :

∆, x : A `F x : A
Ax

∆ `F ? : 1
1

∆, x : A `F t : B

∆ `F λx.t : A⇒ B
⇒I

∆ `F t : A⇒ B ∆ `F u : A

∆ `F tu : B
⇒E

∆ `F t : A ∆ `F u : B

∆ `F 〈t, u〉 : A×B
×I

∆ `F t : A×B
∆ `F π1(t) : A

×E`
∆ `F t : A×B
∆ `F π2(t) : B

×Er

∆ `F t : A X /∈ FV (∆)

∆ `F t : ∀X.A
∀I

∆ `F t : ∀X.A
∆ `F t : A[B/X]

∀E

Figure 4.3: System F with pairs

If t = T[τ] and w is a `-leaf of T, then τ(w) is a subterm of t that can be obtained by reducing πw(t),
where w is the mirror of word w where l is replaced by 1 and r by 2 (i.e. ε = ε ; lw = w 1 ; rw = w 2).

Example 4.3.9. Let t = 〈〈u1, 〈u2, u3〉〉, ?〉. Then t = T[ll 7→ u1, lrl 7→ u2, lrr 7→ u3]
(where Tis the tree on the right) and u3 reduces from π221(t).

`

` `

Z

Definition 4.3.10. We call F-labelling a function from leaves to types of System FP . Given φ, a F-
labelling, and T, a tree, the type T[φ] of System FP is defined as expected:

`[φ] = φ(ε)
Z[φ] = 1

S(T,T′)[φ] = T[w 7→ φ(lw)]×T′[w 7→ φ(rw)]

There is a trivial relation between the term-labelling of a tree, and its F-labelling, that we give in the
following lemma.

Lemma 4.3.11. Let T be a tree.

1. If Γ `F tw : Aw for each of its `-leaves w, then Γ `F T[w 7→ tw] : T[w 7→ Aw]

2. If Γ `F t : T[w 7→ Aw], then for each `-leaf w of T, Γ `F πw(t) : Aw.

Proof. We prove both items by induction over T. Item 1 is immediate, we detail Item 2.

• If T = Z, it has no `-leaf. If T = `, its only `-leaf is ε, and T[ε 7→ Aε] = Aε, and πε(t) = t.

• If T = S(T1,T2), then each `-leaf of T is either lw′ with w′ a `-leaf of T1, or rw′ with w′ a `-leaf
of T2. Moreover, T[w 7→ Aw] = T1[w′ 7→ Alw]×T2[w′ 7→ Arw], and by the induction hypothesis
Γ `F t′ : T1[w′ 7→ Alw′] implies Γ `F πw′(t) : Alw′ (and same for T2). If w = lw′ is a `-leaf of T,
then πw(t) = πw′1(t) = πw′(π1(t)). So Γ `F t : T[w 7→ Aw] implies Γ `F π1(t) : T1[w′ 7→ Alw′],
that implies Γ `F πw(t) : Alw′ . Symmetrically, if w = rw′ is a `-leaf of T, we can also show that
Γ `F t : T[w 7→ Aw] implies Γ `F πw(t) : Arw′ .

�

4.3.3 Translation from Addstruct to System FP

The translation we propose here from Addstruct to System FP consists of two steps:

• Every type T is interpreted by a formula |T |.

42

4. Introducing sums of types

• Every term t, typable by a typing derivation D, is interpreted by a term [t]D ∈ ΛF (which formally
depends on D).

Notice that only typable terms are translated into System FP . Indeed, the translation of an applica-
tion (t) u depends on the sum structure of t and u, that is indicated by their types.

Notation. We may use D to denote typing derivations, however we may also abuse of this notation and
identify a derivation only by its last sequent, so D = Γ ` t : T is just a notation for a typing derivation
named D which ends with the sequent Γ ` t :T .

Interpretation of types. Types are translated in the intuitive way, given that sums are interpreted
with Cartesian products:

|X| = X |0| = 1 |U → T | = |U | ⇒ |T | |T +R| = |T |×|R| |∀X.U | = ∀X.|U |

We naturally extend this translation to contexts: |{x1 : U1, . . . , xk : Uk}| = {x1 : |U1| . . . , xk : |Uk|}.
It can be immediately checked that the tree structure of a type is preserved by translation, as expressed

in the following lemma (the proof proceeds by induction on T , cf. Appendix C.9).

Lemma 4.3.12. If T = T[w 7→ Uw] is a type of Addstruct, then |T | = T[w 7→ |Uw|]. �

Interpretation of typable terms. The interpretation of a typable term is defined in Figure 4.4,
following the last step of its typing derivation.

This interpretation is in fact a direct translation of sums with pairs at each step of derivation, except
for the arrow elimination that is translated by a more complex construction (Remark 4.3.6 may help to
understand this).

Example 4.3.13. Let

D =
Γ ` t :

(
(U → T1) + (U → T2)

)
+ 0 Γ ` u : U + (0 + U)

→E′

Γ ` (t) u :
(
(T1 + (0 + T1)) + (T2 + (0 + T2))

)
+ 0

with t = [t]D1
and u = [u]D2

. Write t1 = π11(t), t2 = π21(t), u1 = π1(u), u2 = π12(u) and u3 = π1(u).
Then

[(t) u]D = 〈 〈 〈t1u1, 〈?, t1u3〉〉 , 〈t2u1, 〈?, t2u3〉〉 〉 , ?〉
Intuitively, this translation of application consists of first distributing the application over sums and
collapsing zeros, before translating subterms: [

(
(t1 + t2) + 0

) (
u1 + (0 + u3)

)
]D is the translation of((

(t1) u1 + (0 + (t1) u3)
)

+
(

(t2) u1 + (0 + (t2) u3)
))

+ 0

Theorem 4.3.14 (Encoding of Addstruct in System FP). If Γ ` t : T is derivable in Addstruct with
derivation D, then |Γ| `F [t]D : |T | is derivable in System FP .

Proof. We proceed by induction on the depth of the derivation D. If it consists of rule ax or ax0, we use
rule Ax or 1 respectively in System FP . If the last rule of D is +I or→I we can conclude by induction. If
the last rule is ∀I , we just need to note that X /∈ FV (Γ) implies X /∈ FV (|Γ|). If it is the rule ∀E , we just
have to note that |U [V/X]| = |U |[|V |/X] to conclude with induction hypothesis. The only interesting
case is when D ends with rule →E′ :

D =
Γ ` t : T[w 7→ (U → Tw)] Γ ` u : T′[v 7→ U]

→E′

Γ ` (t) u : T ◦ T′[wv 7→ Tw]

By induction hypothesis, |Γ| `F [t]D1
: |T[w 7→ (U → Tw)]| and |Γ| `F [u]D2

: |T′[v 7→ U]|. By
Lemma 4.3.12, it means that |Γ| `F [t]D1

: T[w 7→ |U | ⇒ |Tw|] and |Γ| `F [u]D2
: T′[v 7→ |U |]. By

Lemma 4.3.11.2, for every `-leaf w of T, and every `-leaf v of T’, we can derive

|Γ| `F πw([t]D1) : |U | ⇒ |Tw| |Γ| `F πv([u]D2) : |U |
⇒E

|Γ| `F πw([t]D1
)πv([u]D2

) : |Tw|

Since [(t) u]D = T ◦ T′[wv 7→ πw([t]D1
) πv([u]D2

)], by Lemma 4.3.11.1 we can conclude |Γ| `F [(t) u]D :
T ◦ T′[wv 7→ |Tw|], and then conclude using Lemma 4.3.12 again. �

43

4. Introducing sums of types

ax

If D =
Γ, x : T ` x : T

,

then [x]D = x

ax0

If D =
Γ ` 0 : 0

,

then [0]D = ?

+I

If D =

...

Γ ` t : T

...

Γ ` r : R

Γ ` t + r : T +R

then [t + r]D = 〈[t]D1 , [r]D2〉

where D1 and D2 denote the derivations
in the premises.

→I

If D =

...

Γ, x : U ` t : T

Γ ` λx.t : U → T

,

then [λx.t]D = λx.[t]D′

where D′ denotes
...

Γ, x : U ` t : T

→E′

If D =

...

Γ ` t : T[w 7→ (U → Tw)]

...

Γ ` u : T′[v 7→ U]

Γ ` (t) u : T ◦ T′[wv 7→ Tw]

,

then [(t) u]D = T ◦ T′[wv 7→ πw([t]D1
)πv([u]D2

)]

where D1 and D2 denote the derivations in the premises.

∀I
If D =

...

Γ ` t : U X /∈ FV (Γ)

Γ ` t : ∀X.U

,

then [t]D = [t]D′

where D′ =

...
Γ ` t : U

.

∀E

If D =

...

Γ ` t : ∀X.U

Γ ` t : U [V/X]

,

then [t]D = [t]D′

where D′ =

...
Γ ` t : ∀X.U

.

Figure 4.4: Translation from Addstruct to System FP

Notice that this theorem is not enough: a trivial translation that sends every type in Addstruct to 1
and every term to ? will also allow to prove such a theorem. To show that our translation is meaningful
and not trivial, we can provide a partial encoding from System FP to a sequent of Addstruct. Then we
prove that one can go from Addstruct to System FP and back, and obtain the same original sequent.

Definition 4.3.15 (Partial translation from System FP to Addstruct). Let us define the following type
grammar:

T,R, S := X | T → R | ∀X.T | T +R | 0

The types of Addstruct are included in such a grammar in the following sense: every type in Addstruct
can be produced by this grammar, whereas the inverse is not true.

The translation from System FP to Addstruct will have this grammar as target, and then we will ensure
to use only those types that are also types of Addstruct (notice that, for example, (T +R)→ S is in this
grammar but it not a valid type in Addstruct). This translation is done in the intuitive way, given that
Cartesian products are interpreted with sums:

(|X|) = X (|1|) = 0 (|A⇒ B|) = (|A|)→ (|B|) (|A×B|) = (|A|) + (|B|) (|∀X.A|) = ∀X.(|A|)

We naturally extend this translation to contexts: |{x1 : A1, . . . , xk : Ak}| = {x1 : (|A1|) . . . , xk : (|Ak|)}.
The terms are translated accordingly, however notice that this is a partial translation: no every term

in System FP has an image through it. Let t and u not of the form πi(t
′) for any t′. Then the partial

translation is unambiguously defined by

〈|x|〉 = x ; 〈|λx.t|〉 = λx.〈|t|〉 ; 〈|tu|〉 = (〈|t|〉) 〈|u|〉 ; 〈|?|〉 = 0 ; 〈|〈t, u〉|〉 = 〈|t|〉+ 〈|u|〉

44

4. Introducing sums of types

〈|T[wv 7→ πw(t)πv(u)]|〉 = (〈|t|〉) 〈|u|〉 with T 6= Z and T 6= `

Using this partial translation we can prove that the encoding from Addstruct into System FP is not
trivial in the following way.

Theorem 4.3.16. If Γ ` t :T is derivable in Addstruct with derivation D, then (||Γ||) ` 〈|[t]D|〉 : (||T ||) is
syntactically the same sequent.

Proof. A straightforward structural induction shows that for any type T in Addstruct, T = (||T ||). This
also extends to contexts, since for any variable x and derivation D, 〈|[x]D|〉 = 〈|x|〉 = x. So if t = 〈|[t]D|〉,
one has (||Γ||) ` 〈|[t]D|〉 : (||T ||).

We need to prove that for any term t and derivation D = Γ ` t :T , t = 〈||t||〉. We proceed by induction
on the depth of the derivation D. We may abuse of the notation of D by taking only its last sequent.

1. D = ax
Γ, x :U ` x :U

Then 〈|[x]D|〉 = 〈|x|〉 = x.

2. D = ax0
Γ ` 0 : 0

Then 〈|[0]D|〉 = 〈|?|〉 = 0.

3. D =
D1 D2

+I
Γ ` t + r :T +R

where
D1 = Γ ` t :T
D2 = Γ ` r :R

By the induction hypothesis one has t = 〈|[t]D1
|〉 and

r = 〈|[r]D2 |〉. Since [t]D1 has a translation by 〈|·|〉, it
is not of the form πi(t

′) for any t′. The same hap-
pens with [r]D2

. Then 〈|[t + r]D|〉 = 〈|〈[t]D1
, [r]D2

〉|〉 =
〈|[t]D1

|〉+ 〈|[r]D2
|〉 = t + r.

4. D =
D′

→I
Γ ` λx.t :U → T

where
D′ = Γ, x :U ` t :T

By the induction hypothesis t = 〈|[t]D′ |〉, then
λx.t = λx.〈|[t]D′ |〉 = 〈|λx.[t]D′ |〉 = 〈|[λx.t]D|〉.

5. D =
D′

∀I
Γ ` t :∀X.U

where
D′ = Γ ` t :U

By the induction hypothesis t = 〈|[t]D′ |〉 = 〈|[t]D|〉.

6. D =
D′

∀E
Γ ` t :U [V/X]

where
D′ = Γ ` t :∀X.U

By the induction hypothesis t = 〈|[t]D′ |〉 = 〈|[t]D|〉.

7. D =
D1 D2

→E′

Γ ` (t) u :T ◦ T′[wv 7→ Tw]

where
D1 = Γ ` t :T[w 7→ (U → Tw)]
D2 = Γ ` u :T′[v 7→ U]

By the induction hypothesis t = 〈|[t]D1
|〉 and u = 〈|[u]D2

|〉, then (t) u = (〈|[t]D1
|〉) 〈|[u]D2

|〉 =
〈|T ◦ T′[wv 7→ πw([t]D1

)πv([u]D2
)]|〉 = 〈|[(t) u]D|〉.

�

4.3.4 Type equivalence
In this section we explain in which sense the type equivalence of Additive is provable in System FP .

Definition 4.3.17 (equivalence in System FP). In System FP , we say that two formulae A and B
are equivalent (notation A ↔ B) if there are two terms εA,B and εB,A such that `F εA,B : A ⇒ B,
`F εB,A : B ⇒ A and for any term t such that `F t : A, εB,A(εA,B(t)) →∗ t, analogously, if `F t : B,
then εA,B(εB,A(t))→∗ t.
We define such terms for some specific types:

εA,A = λx.x

εA,A×1 = λx.〈x, ?〉
εA×1,A = λx.π1(x)

εA×B,B×A = λx.〈π2(x), π1(x)〉
εA×(B×C),(A×B)×C = λx.〈〈π1(x), π1(π2(x))〉, π2(π2(x))〉
ε(A×B)×C,A×(B×C) = λx.〈π1(π1(x)), 〈π2(π1(x)), π2(x)〉〉

if B1 ↔ B2, εA⇒B1,A⇒B2 = λf.λx. εB1,B2(fx)

if B1 ↔ B2, εA×B1,A×B2 = λp.〈π1(p), εB1,B2(π2(p))〉

45

4. Introducing sums of types

Lemma 4.3.18. For any types T, T ′, if T ≡ T ′ then |T | ↔ |T ′|

Proof. Direct from the terms given in definition 4.3.17. �

This was the last step to prove the logical correctness of Additive type system.

Theorem 4.3.19. If Γ ` t : T is derivable in Additive, then there is a type T ′ ≡ T and a derivation D
in Addstruct such that |Γ| `F ε|T ′|,|T |[t]D : |T |.

Proof. Assume Γ ` t : T is derivable in Additive. By Lemma 4.3.7, there is a type T ′ equivalent to T
such that Γ ` t :T ′ is derivable in Addstruct. Calling D this derivation, this ensures that |Γ| `F [t]D : |T ′|
(Theorem 4.3.14). Moreover, since T ≡ T ′, by Lemma 4.3.18, |T | ↔ |T ′|, so |Γ| `F ε|T ′||T | : |T ′| ⇒ |T |.
Then using rule ⇒E one can conclude |Γ| `F ε|T ′||T |[t]D : |T |. �

Remark 4.3.20. As noticed in the proof of the previous Theorem, if Γ ` t : T , then there exists a type
T ′ ≡ T such that Γ ` t : T ′ is derivable in Addstruct. Then by Theorem 4.3.16, (||Γ||) ` 〈|[t]D|〉 : (||T ′||).
Notice that (||T ′||) = T ′ ≡ T , so by rule ≡, (||Γ||) ` 〈|[t]D|〉 :T , which makes this translation non-trivial.

4.3.5 Interpretation of reduction, strong normalisation and confluence

To some extent, the translation from Addstruct to System FP is also correct with respect to reduction, as
expressed in Theorem 4.3.21 (the proof is given in Appendix C.10).

Theorem 4.3.21. Let Γ ` t : T be derivable (by D) in Addstruct, and t→ r. If the reduction is not due
to rule t + 0→ t, then there is D’ deriving Γ ` r : T , and [t]D →∗ [r]D′ . �

Notice that the type equivalences, i.e. associativity and commutativity of types, have their analogous
in the term equivalences, namely the associativity and commutativity properties of +. However, the
equivalence T + 0 ≡ T has its analogous with a reduction rule, t + 0 → t. Since Addstruct has no
equivalences, this reduction rule is not correct in the translation. However, if Γ ` t+0 : T +0 is derivable
by D in Addstruct, then there is some D′ = Γ ` t : T such that

ε|T+0|,|T |[t + 0]D →∗ [t]D′ .

In the remaining of this section we write t→A r to a one-step algebraic reduction, that is a reduction
by any rule except the β-reduction. We write t→β r to a one-step β-reduction.

Corollary 4.3.22 (Strong normalisation). If Γ ` t : T is derivable in Additive, then t is strongly nor-
malising.

Proof. First notice that if Γ ` t :T is derivable in Additive, then by Proposition 4.3.7, ∃T ′ ≡ T such that
Γ ` t :T ′ is derivable in Addstruct. Let us call this derivation D. Then by Theorem 4.3.14, |Γ| `F [t]D : |T ′|
is derivable in System FP .

Assume t is not strongly normalising, say t → t1 → t2 → · · · . For a first approximation, consider
that none of these reductions happens by rule t+0→ t. Then by Theorem 4.3.21 there exists derivations
D1,D1, . . ., such that [t]D →∗ [t1]D1 →∗ [t2]D1 →∗ · · · . However, due to the strong normalisation of Fp,
there exists a natural number n such that, ∀i ≥ n, [ti]Di = [ti+1]Di+1 .

We proceed in two steps:

1. We prove that, if ti → ti+1 and [ti]Di = [ti+1]Di+1
, then the reduction is an algebraic rule, (i.e. not

a beta-reduction).

2. Then we show that algebraic rules are strictly decreasing with respect to the following measure [Ar-
righi and Dowek, 2008], which is always positive: |0| = 0, |x| = 1, |λx.t| = |t|, |t+ r| = 2 + |t|+ |r|,
|(t) r| = (3|t|+ 2)(3|r|+ 2).

By item 1 only algebraic rules happen, which are strictly decreasing in the positive measure of item 2.
Since t + 0 → t is also strictly decreasing, then t has to be strongly normalising. The proofs of items
1 and 2 can be found in Appendix C.11. Item 1 proceeds by structural induction on ti to show that if
ti →β ti+1, then [ti]Di 6= [ti+1]Di+1 . Item 2 follows from a case analysis on the possible reductions. �

46

4. Introducing sums of types

The strong normalisation can be used to prove the confluence of the typed system.

Corollary 4.3.23 (Confluence). The typed language λadd is confluent.

Proof. The proof proceeds as follows:

1. First we prove the local confluence of the algebraic system. This has been done by modifying
(simplifying) the Coq proof given to prove the local confluence of the algebraic fragment of λlin
in Corollary 3.3.13. The modified Coq files, including the proper version of the library, can be
downloaded from http://membres-liglab.imag.fr/diazcaro/Additive.tar.bz2.

2. Then prove the (local) commutation between algebraic rules and β-reduction. This proofs follows
exactly as in the proof given in Corollary 3.3.13, taking only the valid cases.

3. The two previous steps plus the confluence of the β-reduction given in Corollary 3.3.13, give us the
local confluence of λadd.

Local confluence plus strong normalisation implies confluence [TeReSe, 2003]. �

4.4 Conclusions and open questions
We have treated the problem of interpreting (the role of) additions within algebraic calculi. Our main
concept has been to make explicit the associativity and commutativity properties of sums and the neutral
property of zero by defining a structured type system with sums. Moreover we have shown how to
simulate sums by pairs by distributing the application while doing the translation, and collapsing all the
zero applications.

In an earlier version of this research we attempted to translate Additive directly into the multiplicative
exponential fragment of linear logic; however the choice of the multiplicative fragment, instead of the
additive one, seemed arbitrary. That is to say, the target fragment did not deal with linearity, in the
sense of linear logic. Thereby, the translation of λadd in linear logic we got, can be decomposed into a
first translation from λadd into System F with pairs, as we have presented in this chapter, and then the
standard translation from System F to exponential linear logic [Girard, 1987, Chapter 5]. This suggest
that the linearity of λadd is not directly related to the one of linear logic.

There still lacks an interpretation of the fragment with scalars of λlin . A first attempt was presented
in Chapter 3; however there is no translation into a well-known theory. One interesting idea is to set
up a type system for the whole calculus which reflects the scalars by sums in the types by taking its
floor (considering only positive real numbers as scalars). This idea is presented latter in this thesis,
cf. Chapter 6.

47

http://membres-liglab.imag.fr/diazcaro/Additive.tar.bz2

4. Introducing sums of types

48

Chapter 5

A vectorial type system

Résumé du Chapitre

Ce chapitre fusionne les approches des chapitres 3 et 4, avec pour but précis celui de la car-
actérisation des vecteurs dans l’espace vectoriel des termes. Nous fournissons une version
faible de la preuve de préservation de type et de la normalisation forte du langage typé. Nous
montrons que, dans ce cadre du typage vectoriel à la Curry, la préservation du type n’est pas
complète, ce qui justifie de passer à un typage à la Church dans les chapitres suivants.

The goal of this Chapter is to precisely explicit what is a vector in the space of terms of λlin . We
want a characterisation of terms independent from the term reduction, highlighting the vectorial
structure of terms. To that end, we propose a static analysis tool in the form of a type system. In

Chapter 3 we presented Scalar . If α is a scalar and Γ ` t : T is a sequent, α.t is of type α.T . The
developed language actually provides a static analysis tool for certain applications such as barycentric
computation. It however fails to address a more general issue: let B = ∀X.X → X → X, true = λx.λy.x
and false = λx.λy.y. Without sums but with negative numbers, the term true − false is typed with
0.B, a type which fails to exhibits the fact that we have a superposition of terms: true and false are
two base terms, i.e. they should be considered orthogonal since they both belongs to the same basis, and
they are different. So better types for true and false, in the sense that they can be distinguished from
each other, would be T = ∀X.∀Y.X → Y → X and F = ∀X.∀Y.X → Y → Y respectively. However in
this case, true− false would no have a type in Scalar . Chapter 4 is concerned with the addition of sums
to a regular type system. The language considered, λadd takes into account only the additive fragment
of λlin , it leaves scalars out of the picture. In this case, if Γ ` s :S and Γ ` t :T are two valid sequents,
s + t is of type S + T . In addition it has another flaw: as already noticed in Section 4.1, (t) (u1 + u2)
requires u1 and u2 to have the same type.

This Chapter builds on these two approaches for the precise goal of characterising vectors in complex
vector spaces. Because of the possible negative or complex coefficients, this requires to keep track of the
‘direction’ as well as the ‘amplitude’ of a term. We propose a type system with both sums and scalars,
reflecting the vectorial structure of λlin . Interestingly enough, combining the two separate features of
the type systems presented in Chapter 3 and 4 raises subtle novel issues. In the end we achieve a type
system which is such that if t has type

∑
i αi.Ui, then it must reduce to a t′ of the form

∑
i αi.bi, where

the bi’s are basis terms.
We provide a proof of strong normalisation, entailing the confluence of the calculus, and a weak

subject-reduction property. We show that in this vectorial setting in Curry style, this property is not
complete, justifying moving to Church style in the following chapters.

Plan of the chapter. In Section 5.1 we show λlin again and how quantum computing and other
vectorial computation can be encoded on it. In Section 5.2, we expose the type system and the problem
arising from the possibility of having linear combinations of types. Section 5.3 is devoted to subject
reduction. We first say why the usual result is not valid, then we provide a solution and a candidate
subject reduction theorem; the rest of the section is concerned with the proof of the result. In Section 5.4,
we prove confluence and strong normalisation for this setting. Finally we close the paper with some
examples in Section 5.5 and conclusions in Section 5.6.

49

5. A vectorial type system

5.1 Non-restricted λlin

Figure 5.1 shows the language λlin first presented in Figure 1.1 with the following changes: restrictions
(*) and (**) has been lifted, since it has been shown in Chapter 3 that if one considers a typed language
enforcing strong normalisation, one can wave them and consider a more canonical set of rewrite rules.
Working with a type system enforcing strong normalisation (as shown in Section 5.4), we follow this
approach. The second change is in rule t + 0→ t, which is placed in the Factorisation group of rules.

Terms: t, r,u ::= b | (t) r | 0 | α.t | t + r
Base terms: b ::= x | λx.t

Elementary rules:
0.t→ 0,
1.t→ t,
α.0→ 0,
α.(β.t)→ (α× β).t,
α.(t + r)→ α.t + α.r.

Factorisation rules:
α.t + β.t→ (α+ β).t,
α.t + t→ (α+ 1).t,
t + t→ (1 + 1).t,
t + 0→ t.

Beta reduction:
(λx.t) b→ t[b/x].

Application rules:
(t + r) u→ (t) u + (r) u,
(u) (t + r)→ (u) t + (u) r,
(α.t) r→ α.(t) r,
(r) (α.t)→ α.(r) t,
(0) t→ 0,
(t) 0→ 0.

Contextual rules: If t→ r, then for any term u, scalar α and variable x,
(t) u→ (r) u, t + u→ r + u, α.t→ α.r and
(u) t→ (u) r, u + t→ u + r, λx.t→ λx.r.

Figure 5.1: Syntax and reduction rules of λlin , without restrictions

Encoding booleans

We claimed in Section 1.2.2 that this language was a candidate language for quantum computation. In
this paragraph we backup again this claim, and show how quantum gates and matrices can be encoded.
We slightly modify the encoding presented in Section 1.2.2 to better fit the current setting.

First, both in λlin and in quantum computation one can interpret the notion of booleans. In the
former we can consider the usual booleans λx.λy.x and λx.λy.y whereas in the latter we consider the
regular quantum bits |0〉 and |1〉.

In λlin , a representation of if r then u else t needs to take into account the special relation between
sums and applications. We cannot directly encode this test as the usual ((r) u) t. Indeed, if r, u
and t were respectively the terms true, u1 + u2 and t1 + t2, the term ((r) u) t would reduce to
((true) u1) t1 + ((true) u1) t2 + ((true) u2) t1 + ((true) u2) t2, then to 2.u1 + 2.u2 instead of u1 +u2.
We need to “freeze” the computations in each branch of the test so that the sum does not distribute
over the application. For that purpose we use the well-known notion of thunks: we encode the test
as {((r) [u]) [t]}, where [−] is the term λf.− with f a fresh, unused term variable and where {−} is
the term (−)λx.x. The former “freezes” the computation while the latter “releases” it. Then the term
if true then (u1 + u2) else (t1 + t2) reduces to the term u1 + u2 as one could expect. Note that this
test is linear, in the sense that the term if (α.true + β.false) then u else t reduces to α.u + β.t.

This has a striking similarity with the quantum test that can be found in Section 1.2.2 but also in
[van Tonder, 2004, Altenkirch and Grattage, 2005, Arrighi and Dowek, 2008]. For example, consider the
Hadamard gate had sending |0〉 to

√
2

2 (|0〉+|1〉) and |1〉 to
√

2
2 (|0〉−|1〉) (cf. Section 1.1). If x is a quantum

bit, the value (had)x can be represented as the quantum test if x then
√

2
2 (|0〉+ |1〉) else

√
2

2 (|0〉 − |1〉).
As hinted in Section 1.2.2, one can simulate this operation in λlin using the test construction we just
described: {(had) x} = {((x) [

√
2

2 .true +
√

2
2 .false]) [

√
2

2 .true −
√

2
2 .false]}. Note that the thunks

are necessary: the term ((x) (
√

2
2 .true +

√
2

2 .false)) (
√

2
2 .true −

√
2

2 .false) would reduce to the term
1
2 (((x) true) true + ((x) true) false + ((x) false) true + ((x) false) false), which is fundamentally
different from the term had we are trying to emulate.

Of course, with this procedure we can “encode” any matrix. If the space is of some general dimension

50

5. A vectorial type system

n, instead of the basis elements true and false we can choose the terms λx1. · · · .λxn.xi’s for i = 1 to n
to encode the basis of the space.

5.2 The Vectorial Type System

Let us justify each constructor in the proposed type system. Since we are considering a lambda-calculus,
we need at least an arrow type A → B. The terms true and false can therefore be typed in the usual
way with B = X → (X → X), for a fixed type X. Since the sum

√
2

2 .true +
√

2
2 .false is a superposition

of terms of type B, one could decide to also type it with the type B; in general, a linear combination of
terms of type A would be of type A. But then the terms λx.(1.x) and λx.(2.x) would both be of the
same type A → A, failing to address the fact that the former respect the norm whereas the latter does
not.

To address this problem, we incorporate the notion of scalars in the type system: if A is a valid type,
the construction α.A is also a valid type and if the terms s and t are of type A, the term α.s + β.t is of
type (α+β).A. This was achieved in Chapter 3 and it allows us to distinguish between the two functions
λx.(1.x) and λx.(2.x): the former is of type A→ A whereas the latter is of type A→ (2.A).

Let us now consider the term
√

2
2 .(true− false). Using the above extension to the type system, this

term should be of type 0.B, which is odd in the light of the use we want to make of it. Indeed, applying
the Hadamard gate to this term produces the term false of type B: the “amplitude” of the type (the sum
of the squares of the absolute values of the scalars) jumps from 0 to 1.

This time, the problem comes from the fact that the type system does not keep track of the “direction”
of a term. We therefore propose to go one step further, and to allow sums in types, as presented in
Chapter 4. Provided that T = X → (Y → X) and F = X → (Y → Y) (with Y another fixed type), we
can type the term

√
2

2 .(true− false) with
√

2
2 .(T−F), which has “amplitude” 1, in the same way that the

type of false has “amplitude” 1.

This type system is also able to type the term had = λx.((x) [
√

2
2 .true +

√
2

2 .false]) [
√

2
2 .true −√

2
2 .false], with ((I→

√
2

2 .(T + F))→ (I→
√

2
2 .(T− F))→ T)→ T provided that I is an identity type of

the form Z → Z, and for T and Z any fixed types.
Let us try to type the term {(had) true}. This is possible provided that the fixed type T is equal to

I →
√

2
2 .(T + F). If we now want to type the term {(had) false}, the fixed type T needs to be equal to

I →
√

2
2 .(T− F): we cannot type the term {(had) (

√
2

2 .true +
√

2
2 .false)} since there is no possibility to

conciliate the two constraints on T .
To solve this last problem, we introduce the forall construction in the type system. The term had

can now be typed with ∀T.((I→
√

2
2 .(T+ F))→ (I→

√
2

2 .(T− F))→ T)→ T and the types T and F are
updated to be respectively ∀XY.X → (Y → X) and ∀XY.X → (Y → Y). The terms {(had) true} and
{(had) false} can both be well-typed with respective types

√
2

2 .(T + F) and
√

2
2 .(T− F), as expected.

Let us try to type the term 0. Analogously to what was done for terms, a natural possibility is to
add a special type 0 to type it. This is a reasonable solution that has been used in Chapters 3 and 4. In
this naive interpretation, we would have 0.T equivalent to 0 and 0 would be the unit for the addition on
types.

However, consider the following example. Let λx.x be of type U → U and let r be of type R. The
term λx.x+ r− r is of type (U → U) + 0.R, that is, (U → U). Now choose b of type U : we are allowed
to say that (λx.x+ r− r) b is of type U . This term reduces to b + (r) b− (r) b. If the type system is
reasonable enough, we should at least be able to type (r) b. However, since there is no constraints on
the type R, this is difficult to enforce.

The problem comes from the fact that along the typing of r−r, the type of r is lost in the equivalence
0 ≡ 0.R. The only solution is to distinguish 0 from 0.R. We can also remove 0 altogether, and this is the
choice we make for Vectorial : without type 0, we do not equate T + 0.R and T .

The term 0 can be typed with any type 0.T , so long as T is inhabited (i.e. 0 can come from a reduction
of r− r for some term r of type T).

51

5. A vectorial type system

5.2.1 Types
The grammar of types is defined in Figure 5.2. As in the previous chapters, types come in two flavours:
unit types and general types, that is, linear combinations of types. Unit types include all types of System F
and intuitively they are used to type basis terms. The arrow type admits only a unit type in its domain.
Same as before, this is due to the fact that the argument of a λ-abstraction can only be substituted by
a basis term. For the same reason, type variables, denoted by X,Y , etc. can only be substituted by unit
types.

We also define an equivalence relation upon types as follows:

Definition 5.2.1. For any scalar α, β and types T,R, S, we define the type equivalence ≡ to be the least
congruence such that

1.T ≡ T, α.T + α.R ≡ α.(T +R), T +R ≡ R+ T,
α.(β.T) ≡ (α× β).T, α.T + β.T ≡ (α+ β).T, T + (R+ S) ≡ (T +R) + S.

This makes the types into a weak module over the scalars: they almost form a module apart from
the fact that there is no neutral element for the addition. Note that although we do not have any special
type 0 (as discussed at the beginning of the section), we do have 0.T ; however 0.T is not the neutral
element of the addition on types.

We may use the summation (
∑

) notation without ambiguity, due to the associativity and commuta-
tivity equivalences of +.

Types: T,R, S ::= U | α.T | T +R
Unit types: U, V,W ::= X | U → T | ∀X.U

ax
Γ, x :U ` x :U

Γ ` t :T
0I

Γ ` 0 : 0.T

Γ, x :U ` t :T
→I

Γ ` λx.t :U → T

Γ ` t :

n∑
i=1

αi.∀ ~X.(U → Ti) Γ ` r :

m∑
j=1

βj .Vj ∀Vj ,∃ ~Wj , U [~Wj/ ~X] = Vj

→E

Γ ` (t) r :

n∑
i=1

m∑
j=1

αi × βj .Ti[~Wj/ ~X]

Γ ` t :

n∑
i=1

αi.Ui X /∈ FV (Γ)

∀I
Γ ` t :

n∑
i=1

αi.∀X.Ui

Γ ` t :

n∑
i=1

αi.∀X.Ui
∀E

Γ ` t :

n∑
i=1

αi.Ui[V/X]

Γ ` t :T
sI

Γ ` α.t :α.T

Γ ` t :T Γ ` r :R
+I

Γ ` t + r :T +R

Γ ` t :T T ≡ R
≡

Γ ` t :R

Figure 5.2: Types and typing rules of Vectorial

The following lemmas give some properties of the equivalence relation. Types are linear combinations
of unit types (Lemma 5.2.2). Finally, the equivalence is well-behaved with respect to type constructs
(Lemma 5.2.3).

Lemma 5.2.2 (Types characterisation). For any type T , there exist n ∈ N, α1, . . . , αn ∈ S and unit
types U1, . . . , Un such that T ≡

∑n
i=1 αi.Ui.

Proof. Structural induction over T . If T is a unit type, take α = n = 1 and so T ≡
∑1
i=1 1.U = 1.U .

If T = α.T ′, then by the induction hypothesis T ′ ≡
∑n
i=1 αi.Ui, so T = α.T ′ ≡ α.

∑n
i=1 αi.Ui ≡

52

5. A vectorial type system

∑n
i=1(α× αi).Ui. If T = R+ S, then by the induction hypothesis R ≡

∑n
i=1 αi.Ui and S ≡

∑m
j=1 βj .Vj ,

so T = R+ S ≡
∑n
i=1 αi.Ui +

∑m
j=1 βj .Vj . �

Lemma 5.2.3 (Equivalence forall-introduction).

1.
∑n
i=1 αi.Ui ≡

∑m
j=1 βj .Vj ⇔

∑n
i=1 αi.∀X.Ui ≡

∑m
j=1 βj .∀X.Vj.

2.
∑n
i=1 αi.∀X.Ui ≡

∑m
j=1 βj .Vj ⇒ ∀Vj ,∃Wj , Vj ≡ ∀X.Wj.

3. T ≡ R⇒ T [U/X] ≡ R[U/X].

Proof. Straightforward case analysis over the equivalence rules. �

5.2.2 Typing Rules

The typing rules are described in Figure 5.2. The axiom (ax) and the arrow introduction rule (→I) are
the usual ones. The rule to type the term 0 (0I) takes into account the discussion at the beginning of
Section 5.2. This rule also ensures that the type of 0 is inhabited, discarding problematic types like
0.∀X.X. Any sum of typed terms can be typed using rule +I . Similarly, any scaled typed term can be
typed with sI . These two rules are inherited from Additive and Scalar respectively. The rule ≡ ensures
that equivalent types can be used to type the same terms. Finally, the particular form of the arrow-
elimination rule (→E) is due to the rewrite rules in the Application rules that distribute sums and scalars
over application. This has been already discussed in Section 4.1. The need and use of this complicated
arrow elimination can be illustrated by three examples.

Example 5.2.4. The rule →E is easier to read for trivial linear combinations. It states that provided
that Γ ` r : ∀X.U → R and Γ ` t :V , if there exists some type W such that V = U [W/X], then since the
sequent Γ ` r :V → R[W/X] is valid, we also have Γ ` (r) t : R[W/X].

Example 5.2.5. Consider the terms b1 and b2, of respective types U1 and U2. The term b1 + b2 is of
type U1 + U2. We would reasonably expect the term (λx.x) (b1 + b2) to be also of type U1 + U2. This is
the case thanks to rule →E. Indeed, type the term λx.x with the type ∀X.X → X and we can now apply
the rule.

Example 5.2.6. A slightly more developed example is the projection of a pair of elements. It is possible
to encode in System F the notion of pairs and projections: 〈b1,b2〉 = λx.((x) b1) b2, 〈b′1,b′2〉 =
λx.((x) b′1) b′2, π1 = λx.(x) (λy.λz.y) and π2 = λx.(x) (λy.λz.z). Provided that b1, b′1, b2 and b′2
have respective types U ,U ′, V and V ′, the type of 〈b1,b2〉 is ∀X.(U → V → X) → X and the type of
〈b′1,b′2〉 is ∀X.(U ′ → V ′ → X) → X. The term π1 and π2 can be typed respectively with ∀XY Z.((X →
Y → X)→ Z)→ Z and ∀XY Z.((X → Y → Y)→ Z)→ Z.

The term (π1 + π2) (〈b1,b2〉+ 〈b′1,b′2〉) is then typable of type U +U ′ + V + V ′, thanks to rule →E.
Note that this is consistent with the rewrite system, since it reduces to b1 + b2 + b′1 + b′2.

5.3 Subject Reduction

Since the terms of λlin are not explicitly typed, we are bound to have sequents such as Γ ` t : T1 and
Γ ` t :T2 for the same term t. Using rules +I and sI we get the valid typing judgement Γ ` α.t+β.t :α.T1+
β.T2. Given that α.t+β.t reduces to (α+β).t, a regular subject reduction would ask for the valid sequent
Γ ` (α + β).t :α.T1 + β.T2. Since in general we do not have α.T1 + β.T2 ≡ (α + β).T1 ≡ (α + β).T2, we
need to find a way around this.

A first natural solution could be by using the notion of principal types. However, since our type
system can be seen as an extension of System F , the usual examples for the absence of principal types
apply to our settings: we cannot rely on that.

A second potentially natural solution could be to ask for the sequent Γ ` (α+ β).t :α.T1 + β.T2 to be
valid. If we force this typing rule into the system, it seems to solve the problem but then the type of a
term becomes pretty much arbitrary: with typing context Γ, the term (α+ β).t could be typed with any
combination γ.T1 + δ.T2, when α+ β = γ + δ.

53

5. A vectorial type system

The approach we favour in this Chapter is by using a notion of order on types. The order, denoted
with v, will be chosen so that the factorisation rules make the types of terms smaller according to the
order. We will ask in particular that (α + β).T1 v α.T1 + β.T2 and (α + β).T2 v α.T1 + β.T2 whenever
T1 and T2 are types for the same term.

In particular this approach solves a pitfall coming the rule t+0→ t. Indeed, although x : X ` x+0 :
X + 0.T is well-typed for any inhabited T , the sequent x : X ` x : X + 0.T is not valid in general. Hence
the ordering is extended to state that X v X + 0.T .

5.3.1 An Ordering Relation on Types
We start with another relation ≺ inspired from [Barendregt, 1992], which has also been defined for Scalar
and Additive (Definitions 3.2.4 and 4.2.2). This relation can be deduced from the rules ∀I and ∀E as
follows:

Definition 5.3.1 (Relation � on types). Write T ≺ R if either T ≡
∑n
i=1 αi.Ui and R ≡

∑n
i=1 αi.∀X.Ui

or T ≡
∑n
i=1 αi.∀X.Ui and R ≡

∑n
i=1 αi.Ui[V/X]. We denote the reflexive (with respect to ≡) and

transitive closure of ≺ with �.

The relation � admits a subsumption lemma (proof in Appendix D.1).

Lemma 5.3.2 (�-subsumption). For any context Γ, any term t and any types T,R such that T � R
and no free type variable in T occurs in Γ. Then Γ ` t :T implies Γ ` t :R. �

We can now define the ordering relation v on types discussed above.

Definition 5.3.3 (Relation v on types). Let v be the smallest reflexive transitive relation satisfying the
rules:

• (α+ β).T v α.T + β.T ′, if ∃Γ, t such that Γ ` α.t :α.T and Γ ` β.t :β.T ′.

• T v T + 0.R for any type R.

• If T � R, then T v R.

• If T v R and U v V , then T + S v R+ S, α.T v α.R, U → T v U → R and ∀X.U v ∀X.V .

Note that the fact that Γ ` t : T and Γ ` t : T ′ does not imply that β.T v β.T ′. Indeed, although
β.T v 0.T + β.T ′, we do not have 0.T + β.T ′ ≡ β.T ′. Note also that this ordering is not a subtyping
relation. Indeed, although ` (α+ β).λx.λy.x : (α+ β).∀X.X → (X → X) is valid and (α+ β).∀X.X →
(X → X) v α.∀X.X → (X → X) + β.∀XY.X → (Y → Y), the sequent ` (α + β).λx.λy.x : α.∀X.X →
(X → X) + β.∀XY.X → (Y → Y) is not valid.

5.3.2 Weak Subject Reduction
Let R be any reduction rule from Figure 5.1. We denote →R a one-step reduction by rule R. A weak
version of the subject reduction theorem can be stated as follows.

Theorem 5.3.4 (Weak subject reduction). For any terms t, t′, any context Γ and any type T , if t→R t′

and Γ ` t :T , then

• If R /∈ Factorisation rules, then Γ ` t′ :T .

• If R ∈ Factorisation rules, then ∃S v T such that Γ ` t′ :S and Γ ` t :S.

How weak is this weak subject reduction? First, note that the usual subject reduction result holds for
most of the rules. Second, Theorem 5.3.4 ensures that a term t of a given type, when reduced, can be
typed with a type that is also valid for the term t. Third, we can characterise the order relation as
follows.

Lemma 5.3.5 (Order characterisation). For any type R, unit types V1, . . . , Vm and scalars β1, . . . , βm,
if R v

∑m
j=1 βj .Vj, then there exist a scalar δ, a natural number k, a set N ⊆ {1, . . . ,m} and a unit type

W � Vk such that R ≡ δ.W +
∑
j∈N βj .Vj and

∑m
j=1 βj = δ +

∑
j∈N βj. �

54

5. A vectorial type system

How informative is the type judgement? The following three lemmas express formal relations between
the types and their terms.

Lemma 5.3.6 (Scalars). For any context Γ, term t, type T and scalar α, if Γ ` α.t :T , then there exists
a type R such that T ≡ α.R and if α 6= 0, Γ ` t :R. Moreover, if Γ ` α.t :α.T , then Γ ` t :T . �

Lemma 5.3.6 is a precursor of the generation lemma for scalars (Lemma 5.3.15). However it is more
specific since it assumes a specific type and therefore more accurate in the sense that it gives a specific type
for the inverted rule which is not possible in the actual generation lemma (its proof is in Appendix D.3).

Lemma 5.3.6 excludes the case of scaling by 0. It is covered by the following (proof in Appendix D.4).

Lemma 5.3.7 (Zeros). For any context Γ, term t, unit types U1, . . . , Un and scalars α1, . . . , αn, if
Γ ` 0.t :

∑n
i=1 αi.Ui, then ∀i, αi = 0 and there are scalars δ1, . . . , δn such that Γ ` t :

∑n
i=1 δi.Ui. �

The same invariant that has started in Scalar and continued in Additive is probable in Vectorial : a
basis term can always be given a unit type (proof in Appendix D.5).

Lemma 5.3.8 (Basis terms). For any context Γ, type T and basis term b, if Γ ` b :T then there exists
a unit type U such that T ≡ U . �

In the remainder of this section we provide a few definitions and lemmas that are required in order
to prove Theorem 5.3.4.

In the same way that we can change a type in a sequent by an equivalent one using rule ≡, we can
prove that this can also be done in the context.

Lemma 5.3.9 (Context equivalence). For any term t, any context Γ = (xi :Ui)i and any type T , if
Γ ` t :T and Γ′ = (xi :Vi)i where Ui ≡ Vi, then Γ′ ` t :T .

Proof. We use the notation (Γ, x :U)′ = Γ′, x :U ′ with U ≡ U ′. If we have Γ, x :U ` x :U as a consequence
of an ax rule, we can use ax followed by ≡ rules to prove Γ′, x :U ′ ` x :U . If we have Γ ` λx.t :U → T as a
consequence of an→I rule, by the induction hypothesis Γ′, x :U ′ ` t :T , so by rule→I , Γ′ ` λx.t :U ′ → T .
Since U ′ → T ≡ U → T , we end with rule ≡. All the other cases are straightforward using the induction
hypothesis. �

The following lemma ensures that by substituting type variables for types or term variables for terms
in an adequate manner, the derived type is still valid. Its proof is in Appendix D.6.

Lemma 5.3.10 (Substitution lemma). For any term t, basis term b, term variable x, context Γ, types
T , U , ~W and type variables ~X,

1. if Γ ` t :T , then Γ[U/X] ` t :T [U/X];

2. if Γ, x :U ` t :T , Γ ` b :U [~W/ ~X] and ~X /∈ FV (Γ), then Γ ` t[b/x] :T [~W/ ~X]. �

Three generation lemmas are required: two classical ones, for applications (Lemma 5.3.11) and for ab-
stractions (Lemma 5.3.12, and Corollary 5.3.14,) and one for linear combinations: sums, scalars and zero
(Lemma 5.3.15). The missing proofs are in Appendices D.7 to D.11.

Lemma 5.3.11 (Generation lemma (app)). For any terms t, r, any context Γ and any type T , if
Γ ` (t) r :T , then there exist natural numbers n,m, unit types U, V1, . . . , Vm, types T1, . . . , Tn and scalars
α1, . . . , αn and β1, . . . , βm, such that Γ ` t :

∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` r :

∑m
j=1 βj .Vj, where for all Vj,

there exists ~Wj such that U [~Wj/ ~X] = Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . �

Lemma 5.3.12 (Generation lemma (abs)). For any term variable x, term t, context Γ and type T , if
Γ ` λx.t :R, there exist types U and T such that U → T � R and Γ, x :U ` t :T . �

The following lemma is needed for the proof of Corollary 5.3.14.

Lemma 5.3.13 (Arrows comparison). For any types T,R and any unit types U, V , if V → R � U → T ,
then there exist ~W, ~X such that U → T ≡ (V → R)[~W/ ~X]. �

55

5. A vectorial type system

Corollary 5.3.14 (of Lemma 5.3.12). For any context Γ, term variable x, term t, type variables ~X and
types U and T , if Γ ` λx.t :∀ ~X.(U → T) then the typing judgement Γ, x :U ` t :T is valid. �

Proof. By Lemma 5.3.12, ∃V,R, V → R � ∀ ~X.(U → T) and Γ, x : V ` t :R. Note that V → R �
∀ ~X.(U → T) � U → T , so by Lemma 5.3.13, ∃ ~W, ~Y such that U → T ≡ (V → R)[~W/~Y] ≡ V [~W/~Y]→
R[~W/~Y] so U ≡ V [~W/~Y] and T ≡ R[~W/~Y]. Also by Lemma 5.3.10, Γ[~W/~Y], x :V [~W/~Y] ` t :R[~W/~Y].
By Lemma 5.3.9 and rule ≡, Γ[~W/~Y], x :U ` t : T . If Γ[~W/~Y] ≡ Γ, then we are finished. In the other
case, ~Y appears free in Γ. Since V → R � U → T and Γ ` λx.t : V → R, according to Lemma 5.3.2,
U → T can be obtained from V → R as a type for λx.t; then we would need to use the rule ∀I ; thus ~Y
cannot appear free in Γ, which constitutes a contradiction. So, Γ, x :U ` t :T . �

Lemma 5.3.15 (Generation lemma (linear combinations)). For any context Γ, scalar α, terms t and r
and types S and T :

1. if Γ ` t + r :S then there exist types R and R′ such that Γ ` t :R, Γ ` r :R′ and R+R′ � S;

2. if Γ ` α.t :T , then there exists a type R such that α.R � T and Γ ` α.t :α.R;

3. if Γ ` 0 :T , then there exists a type R such that T ≡ 0.R. �

5.3.3 Proof of Theorem 5.3.4

We are now ready to prove Theorem 5.3.4.

Proof. Let t→R t′ and Γ ` t :T . We proceed by induction. We only give two interesting cases (the full
proof can be found in Appendix D.12).

R = α.t + β.t→ (α+ β).t. Let Γ ` α.t + β.t : T . Then by Lemma 5.3.15, ∃R,S such that Γ ` α.t :R
and Γ ` β.t : S with R + S � T . Then by Lemma 5.3.15, ∃R′, α.R′ � R and Γ ` α.t :α.R′, also
∃S′, β.S′ � S and Γ ` β.t :β.S′.

• If α 6= 0 (or analogously β 6= 0), then by Lemma 5.3.6, Γ ` t :R′ and so by sI we conclude
Γ ` (α+β).t : (α+β).R′. Notice that (α+β).R′ v α.R′+β.S′ v R+S v T . Also using rules
+I and ≡ we conclude Γ ` α.t + β.t : (α+ β).R′.

• If α = β = 0, then notice that Γ ` 0.t : 0.R′ and 0.R′ v 0.R′ + 0.S′ v R + S v T . Also, using
rules +I and ≡, we conclude Γ ` 0.t + 0.t : 0.R′.

R = (λx.t) b→ t[b/x]. Let Γ ` (λx.t) b :T . Then by Lemma 5.3.11, there exist numbers n,m, scalars
α1, . . . , αn, β1, . . . , βm, a unit type U , and general types T1, . . . , Tn such that the it can be derived:
Γ ` λx.t :

∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` b :

∑m
j=1 βj .Vj with

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T ,

where ∀Vj , ~Wj is such that U [~Wj/ ~X] ≡ Vj .

By Lemma 5.3.8,
∑n
i=1 αi.∀ ~X.(U → Ti) ≡ ∀ ~X.(U → Ti) and ∀i, k, Ti = Tk, analogously

∑m
j=1 βj .Vj

is equivalent to Vj where ∀j, h, Vj = Vh. So
∑n
i=1 αi = 1 and

∑m
j=1 βi = 1. Then by rule ≡,

Γ ` λx.t :∀ ~X.(U → Ti), and Γ ` b :Vi.

Thus, by Corollary 5.3.14, Γ, x :U ` t :Ti. Notice that Vi ≡ U [~Wi/ ~X], then, by Lemma 5.3.10, we
have Γ ` t[b/x] :Ti[~Wi/ ~X]. Since Ti[~Wj/ ~X] ≡ (1×1).Ti[~Wj/ ~X] = (

∑n
i=1 αi)×(

∑m
j=1 βj).Ti[

~Wj/ ~X]

which is equal to (
∑n
i=1

∑m
j=1 αi × βj).Ti[~Wj/ ~X], and as all the Ti are equivalents between them,

this type is equivalent to
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . By Lemma 5.3.2, Γ ` t[b/x] :T .

�

5.4 Confluence and Strong Normalisation

The language has the usual properties for a typed lambda-calculus: the reduction is locally confluent,
as has been proved in the proof of Corollary 3.3.13, and the type system enforces strong normalisation.
From these two results, we infer the confluence of the rewrite system.

56

5. A vectorial type system

For proving strong normalisation of well-typed terms, we use reducibility candidates, a well-known
method described for example in [Girard, Lafont, and Taylor, 1989, Chapter 14] The technique is adapted
to linear combinations of terms.

A neutral term is a term that is not a lambda-abstraction and that is not in normal form (i.e. it does
reduce). The set of closed neutral terms is denoted with N . We write Λ0 for the set of closed terms and
SN for the set of closed, strongly normalising terms. If t is any term, Red(t) is the set of all terms t′

such that t→ t′. It is naturally extended to sets of terms.
We say that a set S of closed terms is a reducibility candidate, denoted with S ∈ RC if the following

conditions are verified:

RC1 Strong normalisation: S ⊆ SN .

RC2 Stability under reduction: t ∈ S implies Red(t) ⊆ S.

RC3 Stability under neutral expansion: if t ∈ N and Red(t) ⊆ S then t ∈ S.

RC4 The common inhabit: 0 ∈ S.

We define the following operations on reducibility candidates. Let A and B be in RC.

• A → B is the closure of {t ∈ Λ0 | ∀b ∈ A, (t)b ∈ B} under RC3 and RC4, where b is a base term.

• If {Ai}i is a family of reducibility candidates,
∑
iAi is the closure of {

∑
i αi.ti | ti ∈ Ai} under

RC2 and RC3. If there is only one A in the sum, we write 1.A instead.

These operation also define reducibility candidates, as stated by the following lemma (cf. Appendix D.13
for its proof).

Lemma 5.4.1. If A, B and all the Ai’s are in RC, then so are A → B,
∑
iAi and ∩iAi. �

Reducibility model
A single type valuation is a partial function from type variables to reducibility candidates, that we define
as a sequence of comma-separated mappings, with ∅ denoting the empty valuation:

ρ := ∅ | ρ,X 7→ A.

Type variables are interpreted using pairs of single type valuations, that we simply call valuations,
with common domain:

ρ = (ρ+, ρ−) with |ρ+| = |ρ−|

Given a valuation ρ = (ρ+, ρ−), the complementary valuation ρ̄ is the pair (ρ−, ρ+). We write
(X+, X−) 7→ (A+, A−) for the valuation (X+ 7→ A+, X− 7→ A−). A valuation is called valid if for all X,
ρ−(X) ⊆ ρ+(X).

To define the interpretation of a type T , we use the following result: the decomposition of a type
can be made in a sum of unit types such that they appears only once in the decomposition (proof in
Appendix D.14).

Corollary 5.4.2 (of Lemma 5.2.2). Any type T has a unique canonical decomposition T ≡
∑n
i=1 αi.Ui

such that ∀j, k, Uj 6≡ Uk.

The interpretation [|T |]ρ of a type T in a valuation ρ = (ρ+, ρ−) defined for each free type variable
of T is given by:

[|X|]ρ = ρ+(X),

[|U → T |]ρ = [|U |]ρ̄ → [|T |]ρ,
[|∀X.U |]ρ = ∩A⊆B∈RC [|U |]ρ,(X+,X−) 7→(A,B),

if T ≡
∑
i

αi.Ui is the canonical decomposition of T then [|T |]ρ =
∑
i

[|Ui|]ρ.

From Lemma 5.4.1, the interpretation of any type is a reducibility candidate.

57

5. A vectorial type system

Reducibility candidates deal with closed terms, whereas proving the adequacy lemma by induction
requires the use of open terms with some assumptions on their free variables, that will be guaranteed by
a context. Therefore we use substitutions σ to close terms:

σ := ∅ | (x 7→ b;σ), so t∅ = t and tx 7→b;σ = t[b/x]σ.

Given a context Γ, we say that a substitution σ satisfies Γ for the valuation ρ (notation: σ ∈ [|Γ|]ρ)
when (x : U) ∈ Γ implies xσ ∈ [|U |]ρ̄ (Note the change in polarity). Let T ≡

∑n
i=1 αi.Ui, such that

∀i, j, Ui 6≡ Uj , which always exists by Corollary 5.4.2.
A typing judgement Γ ` t : T , is said to be valid (notation Γ |= t : T) if for every valuation ρ, and

set of valuations {ρi}n, where ρi acts on FV (Ui) \ FV (Γ), and for every substitution σ ∈ [|Γ|]ρ, we have
tσ ∈

∑n
i=1 αi.[|Ui|]ρ,ρi .

Lemma 5.4.3 (Adequacy Lemma). Every derivable typing judgement is valid: for every valid sequent
Γ ` t : T , we have Γ |= t : T .

Proof. The proof is made by induction on the derivation of judgement Γ ` t :T . We look at the last typing
rule that is used, and show in each case that Γ |= t :T , i.e. if T ≡

∑n
i=1 αi.Ui in the sense of Corollary 5.4.2,

then tσ ∈
⊕n

i=1 αi.[|Ui|]ρ,ρi for every valuation ρ, set of valuations {ρi}n, and substitution σ ∈ [|Γ|]ρ
(i.e. substitution σ such that (x : V) ∈ Γ implies xσ ∈ [|V |]ρ̄). The full proof is depicted in Appendix D.15�

Theorem 5.4.4 (Strong normalisation). Assume that Γ ` t : T is a valid sequent, then t is strongly
normalising.

Proof. If Γ is the list (xi : Ui)i, the sequent ` λx1 . . . xn.t : U1 → (· · · → (Un → T) · · ·) is valid. Using
Lemma 5.4.3, we deduce that for any valuation ρ and any substitution σ ∈ [|∅|]ρ, we have σ(t) ∈ [|T |]ρ.
By construction, σ does nothing on t: σ(t) = t. Since [|T |]ρ is a reducibility candidate, λx1 . . . xn.t is
strongly normalising. Now suppose that t were not strongly normalising. There would be an infinite
rewrite sequence of terms (ti)i starting with t. But then (λ~x.ti)i would then be an infinite rewrite
sequence of terms starting with a strongly normalising term: contradiction. Therefore, t is strongly
normalising. �

The confluence of the system is a corollary of this result.

Corollary 5.4.5 (Confluence). If Γ ` s :S is a valid typing judgement and if s →∗ r and s →∗ t, then
there exists s′ such that r→∗ s′ and t→∗ s′.

Proof. A rewrite system that is both locally confluent and strongly normalising is confluent [TeReSe,
2003]. �

5.5 Expressing Matrices and Vectors

In this section we come back to the motivating example introducing the type system and we show how
λlin handles the Hadamard gate, and how to encode matrices and vectors.

With an empty typing context, the booleans

true = λx.λy.x and false = λx.λy.y

can be respectively typed with the types

T = ∀XY.Y → (Y → X) and F = ∀XY.X → (Y → Y).

The superposition has the following type

` α.true + β.false :α.T + β.F.

Note that it can also be typed with (α+ β).∀X.X → X → X.

58

5. A vectorial type system

With an empty typing context, the linear map U sending true to a.true + b.false and false to
c.true + d.false is written as

U = λx.((x)[a.true + b.false])[c.true + d.false].

The following sequent is valid:

` U : ∀X.((I → (a.T + b.F))→ (I → (c.T + d.F))→ X)→ X.

This is consistent with the discussion in the introduction: the Hadamard gate is the case a = b = c =
√

2
2

and d = −
√

2
2 . One can check that with an empty typing context, {(U) true} is well typed of type

a.T + b.F, as expected since it reduces to a.true + b.false.
The term {(had)

√
2

2 .(true + false)} is well-typed of type T + 0.F. Since the term reduces to true,
this is still consistent with the subject reduction: we indeed have T v T + 0.F.

5.6 Conclusions and open questions
In this Chapter we defined a typed, algebraic λ-calculus satisfying a weak subject reduction. The language
allows making arbitrary linear combinations of λ-terms α.t + β.u. Its Vectorial type system is a fine-
grained analysis tool describing the “vectorial” properties of typed terms: first, it keeps track of the
‘amplitude of a term’, i.e. if t and u both have the same type U , then α.t+β.u has type (α+β).U . Then
it keeps track of the ‘direction of a term’, i.e. if t and u have types U and V respectively, then α.t+ β.u
has type α.U + β.V . This type system is expressive enough to be able to type the encoding of matrices
and vectors.

The resulting type system has the property that if Γ ` t :
∑
i αi.Ui then there exists t′ such that

t→∗ t′ and t′ =
∑
i αi.bi, where each bi is a basis term of type Ui. Such a t′ is obtained by normalising

t under all rules but the factorisation rules. Within such a t′ there may be subterms of the form α1.b+α2.b
of type α1.V1 + α2.V2, which are redexes for the factorisation rules. Under our type system, the reduct
(α1 + α2).b can be given both the types (α1 + α2).V1 and (α1 + α2).V2.

The next step is to consider a Church style Vectorial , which would solve the factorisation problem
and give back a full subject reduction property: t+ t→ 2.t only of both t are the same, which in Church
style means that they have the same type.

59

5. A vectorial type system

60

Chapter 6

Extending sums of types to the
complete calculus via lower bounds

Résumé du Chapitre

Avant de passer à un système de type Vectorial à la Church, comme nous avons suggéré dans
le dernier chapitre, nous explorons un chemin alternatif et plus classique : une extension
d’Additive au calcul complet. Cette extension a l’avantage d’avoir des sommes, mais pas de
scalaire, dans les types, permettant comme démontré au Chapitre 4, d’être encodé dans le
Système F avec paires. En conséquence, la question qui se pose ici est comment caractériser
les scalaires dans les types, en n’utilisant que des sommes. Nous proposons une modification de
λlin , où les valeurs scalaires sont uniquement des nombres réels non-négatifs, le type consiste
alors à prendre la partie entière des scalaires afin de les représenter au travers des sommes.
Cela permet de considérer λadd comme une interprétation abstraite de λlin , et donc aussi du
Système F avec paires. Cette extension est une approche alternative à Vectorial , mais qui ne
donne qu’une information approximative sur les superpositions positives.

Before moving to a Church-style Vectorial type system, as suggested in the last chapter, we will
explore an alternative and more classic path: an extension of Additive (cf. Chapter 4) to the full
calculus. This have the advantage of having only sums –and not scalars– in the types, which as

has been shown, is possible to encode in System F with pairs (System FP). Extending Additive to the
full calculus gives rise to the question of how to characterise the scalars in types by using only sums.
We propose a modification of λlin where the scalars are only positive real numbers, and then the types
will approximate the scalars by taking their floor in order to represent them through sums. This allows
us to consider λadd as an abstract interpretation of λlin and hence also System FP . This extension is an
alternative path to Vectorial which gives us some approximate information of positive superpositions, and
provides strong normalisation to the calculus, and hence its confluence, in a simpler way than Vectorial .

Since this is just an study of feasibility, we will prefer a→E rule à la Additive, which although simpler
than the one from Vectorial , is incomplete since it can only type applications where the arguments are
sums of terms with the same type (up to the scalar). On the contrary, we work in Church-style, since
it has been shown in in the previous chapter that factorisation rules with sums fail to have a complete
subject reduction.

Plan of the chapter. In section 6.1 the typed version of λlin , called λCA, is presented. Section 6.2
is devoted to proving that the system features some basic properties, namely a subject reduction result
and the strong normalisation property, which entails the confluence of the calculus. Section 6.4 shows an
abstract interpretation of λCA into λadd. Finally, section 6.5 concludes.

6.1 The calculus λCA

We introduce the calculus λCA, which extends explicit System F [Reynolds, 1974] with linear combinations
of λ-terms. Figure 6.1 shows the abstract syntax of types and terms of the calculus, where the terms are

61

6. Extending sums of types to the complete calculus via lower bounds

based on those of λlin . Scalars, written α, β, γ, . . ., range over non-negative real numbers. Remark that
this is a semi-ring, and no a ring as in the previous systems. In fact, it can be shown that a semi-ring is
enough for most of the systems presented in this thesis.

Notice that there are no scalars at the type level, however, we introduce the following notation: for
any natural number n ≥ 0, we write n.T for the type T + T + · · ·+ T (n times). Also, 0.T = 0. We may
also use the summation symbol

∑n
i=1 Ti, with the convention that

∑0
i=1 T = 0.

The reduction rules, based on λlin , are also given in Figure 6.1. As usual, all reductions are performed
modulo associativity and commutativity of the operator +. It is essentially the rewrite system of λlin ,
with the extra type-application rule.

Types:
T,R, S ::= U | T +R | 0
U, V,W ::= X | U → T | ∀X.U

Terms:
t, r,u ::= b | (t) r |t@U | 0 | α.t | t + r | ΛX.t

b ::= x : U | λx :U.t | ΛX.b

Elementary rules:
0.t→ 0,
1.t→ t,
α.0→ 0,
α.(β.t)→ (α× β).t,
α.(t + r)→ α.t + α.r,
t + 0→ t.

Factorisation rules:
α.t + β.t→ (α+ β).t,
α.t + t→ (α+ 1).t,
t + t→ (1 + 1).t.

Beta reductions:
(λx :U.t) b→ t[b/x],
(ΛX.t)@U → t[U/X].

Application rules:
(t + r) u→ (t) u + (r) u,
(u) (t + r)→ (u) t + (u) r,
(α.t) r→ α.(t) r,
(r) (α.t)→ α.(r) t,
(0) t→ 0,
(t) 0→ 0,

Contextual rules: If t→ r, then for any term u, scalar α, variable x, unit type U and type variable X,
(t) u→ (r) u, t + u→ r + u, α.t→ α.r and
(u) t→ (u) r, u + t→ u + r, λx.t→ λx.r
λx :U.t→ λx :U.r ΛX.t→ ΛX.r

Figure 6.1: Syntax and reduction rules of λCA

Notice that the grammar of types is the same as the one of Additive, presented in Chapter 4 (cf. Fig-
ure 4.2). Also, the same equivalences apply, namely T+0 ≡ T , T+R ≡ R+T and T+(R+S) ≡ (T+R)+S
(cf. Definition 4.1.1).

The premise of the type system, as has been announced in the introduction, is that if t has type T ,
then α.t has type bαc.T . For example, 5

2 .t would have type T + T . The intuitive interpretation is that
the type 2.T gives a lower bound of the “amount” of t : T in the term.

The typing rules are given in Figure 6.2. It is very similar to Additive (cf. Figure 4.2), updated to
explicit typed terms, and with the extra rule mentioned in the above paragraph (sI).

Remark 6.1.1. Recall the discussion about the type 0 for the Vectorial type system (cf. Section 5.2):
if T + 0 ≡ T , then the term (λx.t + r − r) b may have a type, but its reduct (λx.t) b + (r) b − (r) b
may have not. Notice that this issue comes from the negative numbers, however, something similar could
happen in our setting: (λx :U.t + 1

2 .r) b may have a type as soon as b has type U , since the type of 1
2 .r

is b 1
2c.R = 0. However in this case (1

2 .r) b will also have a type: precisely the type 0.

Going back to the discussion of Section 4.1, allowing the arguments to have different types in rule
→E , would lead to a more interesting calculus, but with a more complex rule. It has been done in the
Vectorial type system (cf. Chapter 5), however since the intention of this Chapter is to relate the system
we are presenting, with Additive, we will keep it simpler and relax this restriction.

The main novelty of the calculus is its treatment of scalars (rule sI). In order to avoid having scalars
at the type-level, when typing α.t we take the floor of the term-level scalar α and assign the type bαc.T
to the term, which is a sum of T ’s. Hence the type n.T represents a lower bound of the “amount” of
atoms t : T within the term.

62

6. Extending sums of types to the complete calculus via lower bounds

ax
Γ, x :U ` x :U

ax0
Γ ` 0 : 0 Γ ` t :

n∑
i=1

(U → Ti) Γ ` r :m.U

→E

Γ ` (t) r :

n∑
i=1

m.Ti
Γ, x :U ` t :T

→I
Γ ` λx :U.t :U → T

Γ ` t :∀X.U
∀E

Γ ` t@V :U [V/X]

Γ ` t :T Γ ` r :R
+I

Γ ` t + r :T +R

Γ ` t :T T ≡ R
≡

Γ ` t :R

Γ ` t :U X /∈ FV (Γ)
∀I

Γ ` ΛX.t :∀X.U

Γ ` t :T
sI

Γ ` α.t : bαc.T

Figure 6.2: Typing rules of λCA

6.2 Subject Reduction with lower-bound
In λCA the types are imprecise about the “amount” of each type in a term. For example, let Γ ` t : T and
consider the term s = 1

2 .t+ 3
2 .t. It can be checked that Γ ` s :T . However, s→∗ 2.t, and Γ ` 2.t : 2.T . In

this example a term with type T reduces to a term with type T +T , proving that strict subject reduction
does not hold for λCA. Nevertheless, we prove a similar property: as reduction progresses, types are
either preserved or strengthened, i.e. they become more precise according to the relation between types
defined as follows.

Definition 6.2.1. Let 4 be the smallest reflexive (in terms of ≡) and transitive relation satisfying the
rules:

• If α ≤ β, then α.T 4 β.T .

• If T1 4 T2 and S1 4 S2, then T1 + S1 4 T2 + S2.

• If U2 4 U1 and T1 4 T2, then U1 → T1 4 U2 → T2.

• If T 4 R, then ∀X.T 4 ∀X.R.

This entails that the derived type for a term is a lower-bound (with respect to 4) for the actual type of
the reduced term. We can state the property in other terms: subject reduction is granted in the sense
that the types involved in a term describe some of the types involved in its normal form. However the
“amount” of those types will be just a lower-bound. It is formalised in Theorem 6.2.2.

Theorem 6.2.2 (Subject Reduction up to 4). For any terms t and t′, context Γ and type T , if t→ t′

and Γ ` t :T then there exists some type R such that Γ ` t′ :R and T 4 R.

Intuitively, T 4 R (R is at least as precise as T) means that there are more addends of the same type
in R than in T , e.g. A 4 A+ A for a fixed type A. Notice that the order relation is not the trivial one:
although T 4 T + R for any R (because T ≡ T + 0.R 4 T + 1.R ≡ T + R), the type T will stay or get
increased, but never decrease.

The remain of this section is devoted to the proof of Theorem 6.2.2. Let us give some preliminary
lemmas.

Lemma 6.2.3 (Uniqueness of type). Let Γ ` t :T and Γ ` t :R, then T ≡ R.

Proof. Let Γ ` t :T . Induction on the depth of the derivation. For each item there are two ways to obtain
its type: the trivial one, and by rule ≡, which proves the lemma. �

Lemma 6.2.4 (Generation lemmas). Let T be a type and Γ a typing context.

1. For arbitrary terms u and v, if Γ ` (u) r : T , then there exist natural numbers n and m, a unit
type U , and general types T1, . . . , Tn, such that Γ ` u :

∑n
i=1(U → Ti) and Γ ` r :m.U with∑n

i=1m.Ti ≡ T .

2. For any term t and unit type U , if Γ ` λx :U.r :T , then there exists a type R such that Γ, x :U ` r :R
and U → R ≡ T .

63

6. Extending sums of types to the complete calculus via lower bounds

3. For any terms u and v, if Γ ` u + r : T , then there exist types R and S such that Γ ` u :R and
Γ ` r :S, with R+ S ≡ T .

4. For any term u and non-negative real number α, if Γ ` α.u :T , then there exists a type R such that
Γ ` u :R and bαc.R ≡ T .

5. For any term t, if Γ ` ΛX.r :T , then there exists a type R such that Γ ` r :R and ∀X.R ≡ T with
X /∈ FV(Γ).

6. For any term t and unit type U , if Γ ` r@U :T , then there exists a type V such that Γ ` r : ∀X.V
and V [U/X] ≡ T .

Proof. All the proofs are by induction on the length of the derivation. There are only two cases for each
item: the trivial case and having ≡ as the final rule, which is also trivial using the induction hypothesis
and rule ≡. �

Corollary 6.2.5. For any context Γ, types U and T and term t, if Γ ` λx :U.t :U → T then Γ, x :U `
t :T .

Proof. By Lemma 6.2.4, item 2, there exists R such that Γ, x :U ` t :R and U → R ≡ U → T , which
implies T ≡ R, hence we finish by rule ≡. �

Lemma 6.2.6 (Substitution lemma). For any term t, base term b, context Γ and types U and T ,

1. If Γ ` t :T , then Γ[U/X] ` t[U/X] :T [U/X].

2. If Γ, x :U ` t :T and Γ ` b :U , then Γ ` t[b/x] :T .

Proof. Similarly as the proof of Lemma 4.2.8 (cf. Appendix C.6): for each item there is one more case,
corresponding to rule sI . Let Γ ` α.t : bαc.T as a consequence of Γ ` t :T and rule sI , then:

1. by the induction hypothesis, Γ[U/X] ` t[U/X] :T [U/X]. Therefore, using rule sI , we have Γ[U/X] `
α.t[U/X] : bαc.T [U/X]. Notice that α.t[U/X] = (α.t)[U/X] and bαc.T [U/X] = (bαc.T)[U/X].

2. by the induction hypothesis Γ ` u[b/x] :T . Therefore, using rule sI , we have Γ ` α.u[b/x] : bαc.T .
Notice that α.u[b/x] = (α.u)[b/x].

�

Apart from the classic lemmas given above, we need some extra lemmas. Notice that some of them are
direct reduction cases, which are needed in other cases.

Remark 6.2.7. Notice that Γ ` 0 :T implies T ≡ 0, since the only rules typing 0 are ax0 and ≡.

We can extend the previous remark to applications.

Lemma 6.2.8 (Linearity of 0). For any context Γ, type T and term t, if Γ ` (0) t : T or Γ ` (t) 0 : T ,
then T ≡ 0.

Proof. Let Γ ` (0) t :T . By Lemma 6.2.4(1), there exist natural numbers n andm and types U, T1, . . . , Tn
such that Γ ` 0 :

∑n
i=1 U → Ti, where

∑n
i=1m.Ti ≡ T . Then by Remark 6.2.7, we have n = 0 and so

T ≡
∑0
i=1m.Ti ≡ 0.

Analogously, let Γ ` (t) 0, using the same Lemma 6.2.4(1), there exist natural numbers n,m and
types U, T1, . . . , Tn such that Γ ` 0 :m.U and

∑n
i=1m.Ti ≡ T . Then, by Remark 6.2.7, we have m = 0

and so T ≡
∑n
i=1 0.Ti ≡ 0. �

Lemma 6.2.9 (Product). If Γ ` α.(β.u) :T then Γ ` (α× β).u :R with T 4 R.

Proof. Let Γ ` α.(β.u) :T . By Lemma 6.2.4(4), there exists R1 such that Γ ` β.u :R1 where bαc.R1 ≡ T .
Then again by Lemma 6.2.4(4), there exists R2 such that Γ ` u :R2 where bβc.R2 ≡ R1. So, using
rule sI , one can derive Γ ` (α× β).u : bα× βc.R2. Since α, β ≥ 0, (bαc × bβc).R2 4 bα × βc.R2, so
T ≡ bαc.R1 ≡ (bαc × bβc).R2 4 bα× βc.R2. �

Lemma 6.2.10 (Distributivity). If Γ ` α.(u + r) :T then Γ ` α.u + α.r :T .

64

6. Extending sums of types to the complete calculus via lower bounds

Proof. Let Γ ` α.(u + r) :T . By Lemma 6.2.4(4), there exists R such that Γ ` u + r :R where bαc.R ≡ T .
Then by Lemma 6.2.4(3), there exist S1 and S2 such that Γ ` u :S1 and Γ ` r :S2, with S1 + S2 ≡ R.
So, using rules sI and +I , we can derive Γ ` α.u + α.r : bαc.S1 + bαc.S2. Notice that bαc.S1 + bαc.S2 ≡
bαc.(S1 + S2) ≡ bαc.R ≡ T . �

Lemma 6.2.11 (Factorisation). If Γ ` α.t + β.t :T then Γ ` (α+ β).t :R and T 4 R.

Proof. Let Γ ` α.t + β.t : T . By Lemma 6.2.4(3), there exist T1 and T2 such that Γ ` α.t : T1 and Γ `
β.t :T2, where T1 +T2 ≡ T . Then by Lemma 6.2.4(4), there exist R1 and R2 such that Γ ` t :R1 and Γ `
t :R2, with bαc.R1 ≡ T1 and bβc.R2 ≡ T2. Using sI on the former, we obtain Γ ` (α+ β).t : bα+ βc.R1.
Since R1 and R2 are both types for t, we have R1 ≡ R2, so T ≡ T1 + T2 ≡ bαc.R1 + bβc.R2 ≡
bαc.R1 + bβc.R1 ≡ (bαc+ bβc).R1 4 (bα+ βc).R1. �

Lemma 6.2.12 (Base terms in unit). For any base term b, context Γ and type T , if Γ ` b :T , then there
exists a unit type U such that Γ ` b :U .

Proof. If b is a variable, it must have a type given by its context, which must be a unit type. If b is
an abstraction, it must have a type given by the →I rule or the ∀I rule. In either case, these are unit
types. �

With these lemmas, we can prove the Theorem 6.2.2. Some of the lemmas given are direct cases of
subject reduction. The remaining cases can be found in Appendix E.1.

6.3 Confluence and Strong Normalisation
In order to prove the confluence of the language, we first prove strong normalisation, which in a locally
confluent setting entails confluence. The strong normalisation proof goes as follows: first we show how
to translate the terms of λCA into terms of λlin , i.e. terms without type annotations. Then we show that
typability in λCA implies typability in Vectorial , and so the strong normalisation of the translated term.
This allows us to prove the strong normalisation of λCA terms.

We use the following notation: Γ `v t :T means that the type T can be derived for the term t in the
context Γ using the Vectorial type system. Reductions in Vectorial are denoted by →v, and →=

v denotes
its reflexivity closure: i.e. t →=

v r means that either t →v r or t = r. In the following, we call type beta
rule to rule (ΛX.t)@U → t[U/X].

Let | · | be the following translation from terms in λCA to terms in λlin :

|x| = x |ΛX.t| = |t| |t@U | = |t| |α.t| = α.|t|
|λx : U.t| = λx.|t| |(t) r| = (|t|) |r| |0| = 0 |t + r| = |t|+ |r|

Lemma 6.3.1. If t→ r, then |t| →=
v |r|, where the equality only happens if t→ r by a type beta rule.

Proof. Notice that the translation only removes the type notations. So for each reduction rule in λCA, we
can use the analogous rule in Vectorial in the translated term and obtain the translation of the reduct.
The only case when this is no possible is in the type beta rule: notice that (ΛX.t)@U → t[U/X], and
|(ΛX.t)@U | = |t| = |t[U/X]|. �

Lemma 6.3.2. If Γ ` t :T , then ∃∆, R such that ∆ `v |t| :R.

Proof. First we define a translation from a subset of types in Vectorial to types in λCA. Consider the
subset of types of Vectorial , where scalars range over non-negative real numbers. Then the translation
has this subset as domain:

|X| = X |U → T | = |U | → |T | |∀X.U | = ∀X.|U | |α.T | = bαc.|T | |T +R| = |T |+ |R|

where n.T =
∑n
i=1 T with the convention that 0.T = 0. We also extend this definition to contexts:

|Γ| = {x : |U | | U ∈ Γ}.
Then we prove by induction on the length of the type derivation of Γ ` t : T that |Γ| `v |t| :R with

|R| ≡ T . The full proof can be found in Appendix E.2. �

Lemma 6.3.3. There is no infinite sequence reduction consisting only of type beta rules.

65

6. Extending sums of types to the complete calculus via lower bounds

Proof. Consider the following function from terms to natural numbers:

σ(x : U) = 1 σ(ΛX.t) = 1 + σ(t) σ(t@U) =σ(t) σ(α.t) =σ(t)
σ(λx : U.t) =σ(t) σ((t) r) =σ(t) σ(r) σ(0) = 1 σ(t + r) =σ(t) + σ(r)

Then we prove by structural induction on t that σ((ΛX.t)@U) > σ(t[U/X]). Since it is a positive strictly
decreasing function on the type beta reduction, the sequence cannot be infinite. The full induction can
be found in Appendix E.3. �

Theorem 6.3.4 (Strong Normalisation). If Γ ` t :T in λCA, then t is strongly normalising.

Proof. Let Γ ` t :T , then by Lemma 6.3.2, exists ∆ and R such that ∆ `v |t| :R. Thus by Theorem 5.4.4,
|t| is strongly normalising. Assume that t is not strongly normalising, then t → t1 → t2 → · · · . By
Lemma 6.3.1, |t| →=

v |t1| →=
v |t2| →=

v · · · , since |t| is strongly normalising, there exists n such that
∀i > n, |ti| = |ti+1|, and by Lemma 6.3.1, it happens only when ti → ti+1 by the type beta rule.
Then t must be strongly normalising, since by Lemma 6.3.3, there cannot be an infinite sequence of type
beta-rules. �

Confluence
Now confluence follows as a corollary of the strong normalisation theorem.

Corollary 6.3.5 (Confluence). The typed language λCA is confluent: for any term t, if t →∗ r and
t→∗ u, then there exists a term t′ such that r→∗ t′ and u→∗ t′.

Proof. The proof of the local confluence of the system, i.e. the property saying that t → r and t → u
imply that there exists a term t′ such that r →∗ t′ and u →∗ t′, is an extension of the one presented
for the untyped calculus in Chapter 5, where the set of algebraic rules (i.e. all rules but the beta reduc-
tions) have been proved to be locally confluent using the proof assistant Coq. Then, a straightforward
induction entails the (local) commutation between the algebraic rules and the β-reductions. Finally, the
confluence of the β-reductions is a trivial extension of the proof for λ-calculus. Local confluence plus
strong normalisation (cf. Theorem 6.3.4) imply confluence [TeReSe, 2003]. �

6.4 Abstract Interpretation
The type system of λCA approximates the more precise types that are obtained under reduction. The
approximation suggests that λadd could be seen as an abstract interpretation of λCA: its terms can
approximate the terms of λCA. Scalars can be approximated to their floor, and hence be represented by
sums, just as the types in λCA do. This intuition is formalised in this section, using λadd and the Additive
type system presented in Chapter 4. This calculus is a typed version of the additive fragment of the λlin
(cf. Section 1.2), which in turn is the untyped version of λCA.

The λadd calculus is shown in Figure 6.4. The types and equivalences coincide with those from λCA.
We write the types explicitly in the terms to match the presentation of λCA. We use À to distinguish
the judgements in λCA (`) from the judgements in λadd. Also, we write the reductions in λadd as →

A
.

We define ↓
A
to be the function that takes a term and returns its normal form in λadd. The normal form

always exists and is unique due to strong normalisation and confluence of the calculus (Corollaries 4.3.22
and 4.3.23 respectively). We write ↓ to the analogous function for λCA. We will not prove strong
normalisation for it, however we conjecture that it is the case. We use post-fix notation for these functions,
so ↓(t) is written t↓.

Let Tc be the set of terms in the calculus c. Consider the following abstraction function σ : TλCA →
Tλadd from terms in λCA to terms in λadd:

σ(x : U) = x : U σ(t@U) = σ(t)@U
σ(λx :U.t) = λx :U.σ(t) σ(0) = 0

σ(ΛX.t) = ΛX.σ(t) σ(α.t) =
∑bαc
i=1 σ(t)

σ((t) t′) = (σ(t)) σ(t′) σ(t + t′) = σ(t) + σ(t′)

where for any term t,
∑0
i=1 t = 0.

66

6. Extending sums of types to the complete calculus via lower bounds

Terms: t, r, s ::= b | (t) r | t@U | 0 | t + r
Basis terms: b ::= x : U | λx : U.t | ΛX.t

Distributivity rules: Zero rules: β-reduction:
(u + t) r→

A
(u) r + (t) r (0) t→

A
0 (λx.t) b→

A
t[b/x]

(r) (u + t)→
A

(r) u + (r) t (t) 0→
A
0 (ΛX.t)@U →

A
t[U/X]

t + 0→
A
t

ax
Γ, x :U À x :U

ax0
Γ À 0 : 0 Γ À t :

n∑
i=1

(U → Ti) Γ À r :m.U

→E

Γ À (t) r :

n∑
i=1

m.Ti
Γ, x :U À t :T

→I
Γ À λx : U.t :U → T

Γ À t :∀X.U
∀E

Γ À t@V :U [V/X]

Γ À t :T Γ À r :R
+I

Γ À t + r :T +R

Γ À t :T T ≡ R
≡

Γ À t :R

Γ À t :U X /∈ FV (Γ)
∀I

Γ À ΛX.t :∀X.U

Figure 6.3: The λadd calculus with the Additive type system, in Church-style

We can also define a concretisation function γ : Tλadd → TλCA , which is the obvious embedding of
terms: γ(t) = t.

Let v ⊆ Tλadd × Tλadd be the least relation satisfying:

α ≤ β ⇒
∑α
i=1 t v

∑β
i=1 t

t v t′ ⇒ λx :U.t v λx :U.t′ t v t′ ∧ r v r′ ⇒ (t) r v (t′) r′

t v t′ ⇒ ΛX.t v ΛX.t′ t v t′ ∧ r v r′ ⇒ t + r v t′ + r′

t v t′ ⇒ t@U v t′@U t v r ∧ r v s ⇒ t v s

and let . be the relation defined by t1 . t2 ⇔ t1↓Av t2↓A .
The relation v is a partial order. Also, . is a partial order if we quotient terms by the relation

∼, defined by t ∼ r if and only if t↓= r↓ . We formalise this in the following lemma (its proof is in
Appendix E.4).

Lemma 6.4.1 (Poset).

1. v is a partial order relation

2. . is a partial order relation in Tλadd/∼. �

The following theorem states that the terms in λCA can be seen as a refinement of those in λadd, i.e. we
can consider λadd as an abstract interpretation of λCA. It follows by a non trivial structural induction on
t ∈ TλCA , cf. Appendix E.5.

Theorem 6.4.2 (Abstract interpretation). The function ↓ is a valid concretisation of ↓
A
: ∀t ∈ TλCA ,

σ(t)↓
A
. σ(t↓). �

The following lemma states that the abstraction preserves the typing (proof in Appendix E.6).

Lemma 6.4.3 (Typing preservation). For arbitrary context Γ, term t and type T , if Γ ` t : T then
Γ À σ(t) :T . �

Taking λadd as an abstract interpretation of λCA entails the extension of the interpretation of λadd into
System F with pairs, Fp (cf. Section 4.3) as an abstract interpretation of λCA, as depicted in Figure 6.4.

6.5 Conclusions and open questions
The first typed version of λlin was presented in Chapter 3. This type system, an extension of System F ,
deals with scalars in the terms by reflecting them in the types. However, this introduces an undesirable

67

6. Extending sums of types to the complete calculus via lower bounds

λCA

↓

��

σ // λadd

↓
A

(.) ��

[·]D // Fp

↓
F

��
λCA

σ
// λadd

[·]D
// Fp

Figure 6.4: Abstract interpretation of λCA into System FP

restriction in the calculus: it can only sum terms of the same type, up to the scalar weighing it. With
λCA, which is also based on System F , we have shown how to design a typed algebraic calculus that
combines polymorphism and sums of different types, thereby lifting this restriction. Sums of types can
be encoded as pairs, as shown in Chapter 4, thus these constructions are quite standard.

λCA is a confluent, typed, strongly normalising, algebraic λ-calculus, based on λlin , which has an
algebraic rewrite system without restrictions, in contrast with λalg , which is presented as an equational
theory instead of a rewrite system; and λlin , where restrictions are introduced to make the calculus to
make it confluent.

In this chapter, scalars are approximated by natural numbers. This approximation yields a subject
reduction property which is exact about the types involved in a term, but only approximate in their
“amount” or “weight”. In addition, the approximation is a lower bound: if a term has a type that is a sum
of some amount of different types, then after reducing it these amounts can be incremented but never
decremented.

One of the original motivations for this system was to extend the translation of λlin to a standard
calculus. The translation of the additive fragment of λlin (λadd) into System F with pairs (Fp) was first
presented in Chapter 4. We have shown that terms in λadd can be seen as an abstract interpretation of
terms in λCA, and then that Fp can also be used as an abstract interpretation of terms in λCA by using
the translation from λadd into Fp.

In our calculus, we have chosen to take the floor of the scalars to approximate types. However, this
decision is arbitrary, and we could have chosen to approximate types using the ceiling instead. Therefore,
an obvious extension of this system is to take both floor and ceiling of scalars to produce type intervals,
thus obtaining more accurate approximations.

It is still an open question how to obtain a similar result for a calculus where scalars belong to an
arbitrary ring.

68

Chapter 7

Lineal : a vectorial type system in
Church style

Résumé du Chapitre

Nous définissons un lambda-calcul algébrique explicitement typé, fondé sur λlin et Vectorial ,
qui a la propriété de préservation du type et est fortement normalisable. Le langage permet
de faire des combinaisons linéaires arbitraires de termes. Le système de type est un outil
d’analyse décrivant les propriétés vectorielles des termes : il garde la trace de l’« amplitude
d’un terme », c-à-d que si t et u sont tous deux du même type U alors α.t + β.u est de
type (α + β).U . En outre, il garde la trace de la « direction d’un terme », c-à-d que si t et
u sont de type U et V respectivement alors α.t + β.u est de type α.U + β.V . Ce calcul est
capable d’encoder des matrices et des vecteurs comme Vectorial , mais il a l’avantage d’avoir
la propriété de préservation du type : les problèmes décrits dans le Chapitre 5 sont résolus ici
à l’aide de types explicites dans les termes, ainsi qu’un système de sous-typage.

This chapter presents Lineal , a type system that solves the drawbacks of the previous type systems
presented in this thesis. Recall that a straightforward extension of System F (cf. Definition 3.3.1)
would have two problems. On the one hand, it is too restrictive because of rule +/

I , which allows
adding only terms with the exact same type. And, on the other hand, it does not provide any information
about the scalars, as it follows from rule s/I ; i.e. any typed term can be weighted and preserves the same
type.

The Scalar type system presented in Chapter 3 is a novel approach to solve the second problem: by
allowing scalars to weight types, the scalars in the terms are tracked in the types. However, it still does
not solve the restriction of adding only terms of the same type (up to the scalar).

The Additive type system in Chapter 4 solves this problem, but it comes at the price of reintroducing
a restriction: it types only the additive fragment of λlin . It has however the advantage of being more
classic, in the sense that it can be interpreted in System F via a parallel between additions and pairs
(cf. Section 4.3).

Finally, the Vectorial type system in Chapter 5 solves the previous two problems by combining the
two approaches: types can be weighted and added, revealing the vectorial shape of the term. It has
been shown however that the factorisation reduction rules prevent this system from preserving the types
during the reduction: just a weak version of the subject reduction property can be proven (cf. Section 5.3).
We have suggested that a Church style presentation would solve this problem. This Chapter develops
precisely this idea: a Church style Vectorial type system for the λlinwith both strong normalisation and
subject reduction. We call this explicitly typed calculus Lineal .

In Chapter 6 we had presented an alternative approach: λCA, a typed calculus where terms can be
weighted and summed up without restrictions. It does not have scalars in the types, only sums (which
have been proved to be interpretable with pairs). It has been developed in Church style, so it does not
have the factorisation rules problem. Despite the fact that this is a simpler approach, it does only serve
a purpose: that of providing the system with strong normalisation, and this without restrictions on the
calculus other than taking scalars over positive real numbers. Notwithstanding, the information about

69

7. Lineal : a vectorial type system in Church style

scalars given by the type system itself is only a lower bound approximation. In addition, it adds a new
restriction: scalars can only range over non-negative real numbers, in comparison to λlin , where any
commutative ring is allowed.

Plan of the Chapter. Section 7.1 presents the typed calculus and discusses some design choices. The
next two sections, 7.2 and 7.3, are devoted to the correctness of this calculus by showing subject reduction
and strong normalisation, respectively. In Section 7.4, we show how to encode the Hadamard gate in this
setting. Finally, Section 7.5 concludes.

7.1 The calculus Lineal

We introduce the calculus Lineal , an explicitly typed algebraic λ-calculus based on λlin and Vectorial .
First, we will need a specific notation for arrays. Notice that what was written as ∀

−→
X in Vectorial will

not be enough in this calculus. In order to eliminate ∀’s we now need to know how many X’s are in
−→
X .

Hence we introduce the following vectorial notation.

The vectorial notation. As usual we write
∑n
i=1 Ti for T1 + · · · + Tn. Also, since the terms are

explicitly typed, we may write bV to for term b when it has type V . Finally, we write t@U1 as a
shorthand for t@(

∑1
i=1 Ui).

The vectorial notation 〈·〉n is defined as follows:
〈∀X〉

k
.t = ∀X1.∀Xk.t

〈λx : U〉
k
.t = λx1 : U1.λxk : Uk.t

〈ΛX〉
k
.t = ΛX1.ΛXk.t

t@〈
n∑
i=1

Ui〉k = (· · · (t)@(

n1∑
i=1

Ui1)) · · ·@(

nk∑
i=1

Uik)

(t) 〈b〉
n

= (· · · (t) b1) · · · bk
(t) 〈bV 〉

k
= (· · · (t) bV1

1) · · · bVkk
t〈[Uj/X]〉

k
= t[Uj1/X1] · · · [Ujk/Xk]

〈U〉
k
→ T = U1 → · · · → Uk → T

〈Γ ` t :T 〉
k

= Γ1 ` t1 :T1 · · · Γk ` tk :Tk

Where

• The index k may be 0, in which case the term/type can be removed, e.g. 〈∀X〉
0
.T@〈[U/X]〉

0
= T .

• We use 〈
∑m+δ
i=1 Ui〉k for

∑m+δ1
i=1 Ui1 , . . . ,

∑m+δk
i=1 Uik .

• We use it also to enumerate elements: 〈e〉n = e1, . . . , en, where e may be a term, a type, a scalar,
or any other element.

Figure 7.1 shows the abstract syntax of types and terms and their reduction rules. It includes all the
rules from λCA (the only explicitly typed system presented so far), plus three new rules grouped in two
categories: the Type-linearity rules and the Type-distributivity rule. In order to understand why they are
needed, notice the differences in the syntax between what is presented here and λCA (cf. Figure 6.1).
The terms are the same, except for the type application, where it can be read t@(

∑n
i=1 Ui) instead of

t@U . This sum of unit types acts as a choice operator: in t@U the type U is the argument for a lambda
abstraction of types, in t@(

∑n
i=1 Ui) we are saying that one of the Ui will be the argument, without

saying a priori which one.
This change comes from the fact that the type system is based on Vectorial , where the arrow elimina-

tion →E (cf. Figure 5.2) is more versatile than the one in λCA: the arguments passed to an abstraction
can be a sum of any terms, as soon as the abstraction is able to take any of these terms by means of
polymorphism. As a consequence of this extension, the rule becomes a mix between an arrow elimina-
tion and a forall elimination. However, a forall elimination in a system with explicit types needs a type
application. Then, roughly speaking, the sum of Ui’s represents all the types that will be applied to the
type application in order to specialise it to each of its arguments.

Having said this, let us analyse one by one the reduction rules concerning types. The beta-reduction
is standard: when the given type is just one unit type, and the term is an abstraction of type, a type
substitution occurs. The type-distributivity rule, despite its complicated aspect, is simply taking into
account the above discussion: if the term is a type application, it has to take into account the arguments
in order to choose the correct type, and hence we must have a condition saying that the arguments can

70

7. Lineal : a vectorial type system in Church style

be transformed into the types expected by the abstractions. The type of the arguments has been written
as superscripts Vi, since they are known because they are provided by the terms. Notice the vectorial
notation, which is used to allow more than one type-applications.

Example 7.1.1. The type-distributivity rule: let U1, U2, U3, such that Ui[W11/X1][W32/X2] = Vi, then

(((((ΛX1.ΛX2.λx1 : U1.λx2 : U2.λx3 : U3.t)@(W11
+W21

))@(W12
+W22

+W32
)) bV1

1) bV2
2) bV3

3

reduces to
(((λx1 : V1.λx2 : V2.λx3 : V3.t[W11

/X1][W32
/X2]) b1) b2) b3

which, using the vectorial notation, can be written as

((〈ΛX〉
2
.〈λx : U〉

3
.t)@〈

m∑
i=1

Wi〉2) 〈bV 〉
3
→ (〈λx : V 〉

3
.t〈[Wj/X]〉

2
) 〈b〉

3

where m1 = 2, m2 = 3, j1 = 1 and j2 = 3.

The type-linearity rules are needed to allow for the type application to be linear with respect to sums
and scalars. Notice however that they were not needed in λCA. This change comes from the difference
between the forall typing rules in Vectorial and in λCA.

Types:

T,R, S ::= U | α.T | T +R

U, V,W ::= X | U → T | ∀X.U | U@(
n∑
i=1

Vi)

Terms:

t, r,u ::= b | (t) r | t@(
n∑
i=1

Ui) | 0 | α.t | t + r | ΛX.t

b ::= x : U | λx :U.t | ΛX.b

Contexts
Contexts are defined as sets of pairs x : C, where C is taken from the following grammar

C ::= X | C → T | ∀X.C

Reduction rules
Elementary rules:
0.t→ 0,
1.t→ t,
α.0→ 0,
α.(β.t)→ (α× β).t,
α.(t+r)→ α.t+α.r,
t + 0→ t.

Factorisation rules:
α.t + β.t→ (α+ β).t,
α.t + t→ (α+ 1).t,
t + t→ (1 + 1).t.

Beta reductions:
(λx : U.t) b→ t[b/x],
(ΛX.t)@U → t[U/X].

Application rules:
(t + r) u→ (t) u + (r) u,
(u) (t + r)→ (u) t + (u) r,
(α.t) r→ α.(t) r,
(r) (α.t)→ α.(r) t,
(0) t→ 0,
(t) 0→ 0.

Type-linearity rules:

(α.t)@(
n∑
i=1

Ui)→ α.t@(
n∑
i=1

Ui),

(t+r)@(
n∑
i=1

Ui)→ t@(
n∑
i=1

Ui)+r@(
n∑
i=1

Ui).

Type-distributivity rule:
If ∀h = 1, . . . , n, Uh〈[Wj/X]〉

k
= Vh, then

((〈ΛX〉
k
.〈λx : U〉n .t)@〈

∑m
i=1Wi〉k) 〈bV 〉n → (〈λx : V 〉n .t〈[Wj/X]〉

k
) 〈b〉n

Contextual rules: If t→ r, then for any term u, scalar α and variable x,
(t) u→ (r) u, t + u→ r + u, α.t→ α.r,
(u) t→ (u) r, u + t→ u + r, λx.t→ λx.r,
ΛX.t→ ΛX.r, t@(

∑
i Ui)→ r@(

∑
i Ui).

Figure 7.1: Syntax and reduction rules of Lineal

71

7. Lineal : a vectorial type system in Church style

As usual, we define type equivalences, which are the same as in Vectorial , with one extra equivalence
for the type application.

1.T ≡ T, α.T + α.R ≡ α.(T +R), T +R ≡ R+ T,
α.(β.T) ≡ (α× β).T, α.T + β.T ≡ (α+ β).T, T + (R+ S) ≡ (T +R) + S,

(∀X.U)@V ≡ U [V/X],

Similarly to Vectorial , every type is a linear combination of unit types.

Lemma 7.1.2 (Type characterisation). For any type T , ∃〈U〉
n
, 〈α〉

n
such that T ≡

∑n
i=1 αi.Ui.

Proof. Structural induction on T . If T is a unit type, then take n = 1 and αi = 1. If T is α.T ′, then by
the induction hypothesis T ′ ≡

∑n
i=1 βi.Ui, so α.T

′ ≡ α.
∑n
i=1 βi.Ui ≡

∑n
i=1(α × βi).Ui. If T = R + S,

then it follows directly by the induction hypothesis. �

Figure 7.2 presents a subtyping relation and the typing rules. The subtyping relation takes care of
the problem with 0’s in the types (cf. discussion in Section 5.2): T � T + 0.R for any R (cf. rule Ax).
The rest of the rules are the reflexivity, transitivity and contextual closure of the relation. Notice that,
roughly speaking, the subtyping relation only adds types weighted with 0, but it does not change the
structure of the type, in the sense of the following lemma.

Lemma 7.1.3 (Shapes comparison).

If
∑n
i=1 αi.Ui �

∑m
j=1 βj .〈∀X〉k .Vj, then ∀i,∃U ′i / Ui ≡ 〈∀X〉k .U ′i .

If
∑n
i=1 αi.Ui �

∑m
j=1 βj .Vj@〈

∑p
o=1Wk〉k , then ∀i,∃U ′i / Ui ≡ U ′i@〈

∑p
o=1Wk〉k .

If
∑n
i=1 αi.Ui �

∑m
j=1 βj .V → Tj, then ∀i,∃T ′i / Ui ≡ V → T ′i .

Proof. Notice that in all the equivalences, the types on the left hand side of the equivalence appear also
on the right hand side. This is the case also in the rule Ax, hence it is always the case that all the Ui are
in the type on the right hand side. Since all the types on the right hand side have the same form, then
Ui has to have this form too. �

All the typing rules are the explicitly typed analogues of those in Vectorial , with only one change:
the ∀E is replaced by a @I , which is more general since it allows introducing a sum of unit types for
replacement. The forall elimination rule is a special case, when m = 1, which follows from the extra
equivalence rule mentioned above.

Γ ` t :

n∑
i=1

αi.∀X.Ui
==================== ∀E
Γ ` t@U :

n∑
i=1

αi.Ui[V/X]

=

Γ ` t :

n∑
i=1

αi.∀X.Ui
@I

Γ ` t@U :

n∑
i=1

αi.(∀X.Ui)@V
�

Γ ` t@U :

n∑
i=1

αi.Ui[V/X]

In spite of being written differently, the arrow elimination (→E) is in fact completely analogous to
the one in Vectorial . We just changed the notation ∀

−→
X for the vectorial notation, and added the type

application @ to instantiate the X’s.

Example 7.1.4. We show how to type the term from Example 7.1.1 (we use superscripts to denote several

72

7. Lineal : a vectorial type system in Church style

Subtyping relation

Ax
T � T + 0.R

T ≡ R
Re

T � R

T � R R � S
Tr

T � S

T � R V � U
Cx→

U → T � V → R

T � R
Cx+

T + S � R+ S

U � V
Cx∀

∀X.U � ∀X.V

U � V
Cx@

U@(

n∑
i=1

Wi) � V@(

n∑
i=1

Wi)

T � R
Cxs

α.T � α.R

Typing rules

ax
Γ, x :U ` x :U

Γ ` t :T
0I

Γ ` 0 : 0.T

Γ, x :U ` t :T
→I

Γ ` λx :U.t :U → T

Γ ` t :

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k Γ ` r :

m∑
j=1

βj .Vj
∀Vj ,∃j1, . . . , jk /
U〈[Wj/X]〉

k
= Vj

→E

Γ ` (t) r :

n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

Γ ` t :

n∑
i=1

αi.Ui X /∈ FV (Γ)

∀I
Γ ` ΛX.t :

n∑
i=1

αi.∀X.Ui

Γ ` t :

n∑
i=1

αi.∀X.Ui
@I

Γ ` t@(

m∑
j=1

Vj) :

n∑
i=1

αi.(∀X.Ui)@(

m∑
j=1

Vj)

Γ ` t :T
sI

Γ ` α.t :α.T

Γ ` t :T Γ ` r :R
+I

Γ ` t + r :T +R

Γ ` t :T T � R
�

Γ ` t :R

Figure 7.2: Typing rules of Lineal

application of the same rule):

x1 : U1, x2 : U2, x3 : U3 ` t :T
======================= →I

3

` 〈λx : U〉3 .t : 〈U〉3 → T
============================= ∀I2

` 〈ΛX〉
2
.〈λx : U〉

3
.t : 〈∀X〉

2
.〈U〉

3
→ T

=== @I
2

(〈ΛX〉
2
.〈λx : U〉

3
.t)@〈

m∑
i=1

Wi〉2 : (〈∀X〉
2
.〈U〉

3
→ T)@〈

m∑
i=1

Wi〉2 ` b1 :V1

→E

` ((〈ΛX〉
2
.〈λx : U〉

3
.t)@〈

m∑
i=1

Wi〉2) b1 :V2 → V3 → T 〈[Wj/X]〉
2

` b2 :V2 ` b3 :V3

== →E
2

` ((〈ΛX〉
2
.〈λx : U〉

3
.t)@〈

m∑
i=1

Wi〉2) 〈b〉
3
:T 〈[Wj/X]〉

2

Notice that ((〈ΛX〉2 .〈λx : U〉3 .t)@〈
∑m
i=1Wi〉2) 〈bV 〉3 →∗ t〈[Wj/X]〉2〈[b/x]〉3 And since x1 : U1, x2 :

U2, x3 : U3 ` t :T , by the Substitution Lemma (cf. Lemma 7.2.5 in Section 7.2),

x1 : V1, x2 : V2, x3 : V3 ` t〈[Wj/X]〉2 :T 〈[Wj/X]〉2

73

7. Lineal : a vectorial type system in Church style

Finally, using the Substitution Lemma again (three times), we get

` t〈[Wj/X]〉
2
〈[b/x]〉

3
:T 〈[Wj/X]〉

2

7.2 Subject reduction
The Church style presentation plus the subtyping relation provides this calculus with an exact subject
reduction theorem, in contrast with what happened in Vectorial (cf. Section 5.3) and λCA (cf. Section 6.2).

Theorem 7.2.1 (Subject reduction). For any terms t, t′, any context Γ and any type T , if t→ t′ then
Γ ` t :T ⇒ Γ ` t′ :T .

In order to prove this Theorem, we need some previous results. The Generation Lemmas, which are
straightforward in a Church style setting, can be stated as follows:

Lemma 7.2.2 (Generation lemmas). Let T be a type, U a unit type, α a scalar, Γ a typing context and
t and r terms.

1. If Γ ` x :T , then there exists a type U and context ∆ such that Γ = ∆ ∪ {x : U}, and U � T .

2. If Γ ` 0 :T , then there exists a type R and a term t such that Γ ` t :R and 0.R � T .

3. If Γ ` (t) r : T , then ∃n, m, k, 〈δ〉
k
, 〈X〉

k
, 〈α〉n , 〈β〉m , U , 〈T 〉n , 〈V 〉m , 〈〈W 〉m+δ

〉m , where ∀Vj,
∃j1, . . . , jk / U〈[Wj/X]〉

k
= Vj, and such that Γ ` t :

∑n
i=1 αi.(〈∀X〉k .(U → Ti))@〈

∑m+δ
j=1 Wj〉k ,

Γ ` r :
∑m
j=1 βj .Vj and

∑n
i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
� T .

4. If Γ ` λx :U.t :T , then there exists a type R such that Γ, x :U ` t :R and U → R � T .

5. If Γ ` t + r :T , then there exist types R and S such that Γ ` t :R, Γ ` r :S and R+ S � T .

6. If Γ ` α.t :T , then there exists a type R such that Γ ` t :R and α.R � T .

7. If Γ ` ΛX.t : T , then X /∈ FV (Γ) and there exists types 〈U〉
n

and scalars 〈α〉
n

such that Γ `
t :
∑n
i=1 αi.Ui and

∑n
i=1 αi.∀X.U � T .

8. If Γ ` t@(
∑m
j=1 Vj) : T , then there exists types 〈U〉n , a variable X and scalars 〈α〉n such that

Γ ` t :
∑n
i=1 αi.∀X.Ui and

∑n
i=1 αi.(∀X.Ui)@(

∑m
j=1 Vj) � T .

Proof. All the proofs follow by induction on the length of the derivation. There are only two cases for each
item: the trivial case and having � as the final rule, which is also trivial using the induction hypothesis
and rule �. �

As usual, base terms have unit types, or any type bigger than a unit type, i.e. a unit type with extra
0’s. (proof in Appendix F.1).

Corollary 7.2.3 (Base terms). If Γ ` b :T , then exists V such that Γ ` b :V and V � T . �

Since the types are explicitly written in the terms, there are two ways of obtaining a type for a term:
by construction, which gives the type written in the term, and by subtyping. This fact allows us to
consider one type as principal (namely the one written in the term).

Lemma 7.2.4 (Principal types). Let Γ ` t : T and Γ ` t :R, then ∃S such that Γ ` t : S, S � T and
S � R.
Proof. Induction on the depth of the derivation of Γ ` t :T . For each item there are two ways to obtain
its type: the trivial one, and by rule �, which proves the lemma. �

The substitution lemma is analogous to that in all the previous systems.

Lemma 7.2.5 (Substitution Lemma). For any term t, base term b, context Γ and types U and T ,

1. If Γ ` t :T , then Γ[U/X] ` t[U/X] :T [U/X].

2. If Γ, x :U ` t :T and Γ ` b :U , then Γ ` t[b/x] :T .

Proof. We reuse the proof of Lemma 5.3.10 (cf. Appendix D.6) with minimum changes. �

Finally, using the above lemmas we can prove Subject reduction. The proof follows from a rule by
rule analysis and is rather long and technical, so we give it to Appendix F.2.

74

7. Lineal : a vectorial type system in Church style

7.3 Strong normalisation

We prove this result by translating typed terms to typed terms in Vectorial . To avoid any ambiguity
we use →v to refer to reductions in Vectorial and `v for its type derivations. We also write →=

v for the
reflexivity closure of →v, i.e. t→=

v r, if either t→v r or t = r.
Let ‖·‖ be the following translation from terms in Lineal to terms in Vectorial :

‖x : U‖ = x ‖t@(
∑n
i=1 Ui)‖ = ‖t‖

‖λx : U.t‖ = λx.‖t‖ ‖0‖ = 0
‖ΛX.t‖ = ‖t‖ ‖α.t‖ = α.‖t‖
‖(t) r‖ = (‖t‖) ‖r‖ ‖t + r‖ = ‖t‖+ ‖r‖

We also define a translation from types in Lineal to types in Vectorial as follows:

‖X‖ = X

‖U → T‖ = ‖U‖ → ‖T‖
‖∀X.U‖ = ∀X.‖U‖

‖(∀X.U)@V ‖ = ‖U [V/X]‖

‖U@(

n∑
i=1

Vi)‖ = ‖U‖ If U 6≡ ∀X.W or n > 1

‖α.T‖ = α.‖T‖
‖T +R‖ = ‖T‖+ ‖R‖

Finally, we extend this definition to contexts as ‖Γ‖ = {x : ‖U‖ |x :U ∈ Γ}.
Notice that the translation of U@V when U 6= ∀X.W is not defined, however this type has not inhabits

since it cannot be introduced by the context (it is not in the definition of contexts), nor by a typing rule.
This translation is stable under equivalence (Lemma 7.3.1), under substitution (Lemma 7.3.2), and

neutral with respect to type substitution in terms (Lemma 7.3.3):

Lemma 7.3.1. If T ≡ R, then ‖T‖ ≡ ‖R‖.

Proof. Case by case analysis. cf. Appendix F.3. �

Lemma 7.3.2.

1. ‖t[b/x]‖ = ‖t‖[‖b‖/x].

2. ‖T [W/X]‖ ≡ ‖T‖[‖W‖/X], if T 6= U@V with U 6= ∀X.W .

Proof. Structural induction over t for the first case and over T for the second. cf. Appendix F.4. �

Lemma 7.3.3. ‖t[U/X]‖ = ‖t‖.

Proof. Trivial since the translation removes all the types from the terms. �

The following lemma says that this translation preserves the reducibility, and the reductions are done
in the same amount of steps before and after the translation, except in one case where both terms translate
to the same. The proof is done by rule by rule analysis and can be found in Appendix F.5.

Lemma 7.3.4 (Reducibility preservation). If t→ r, then ‖t‖ →=
v ‖r‖. Moreover, if the reduction t→ r

is not the type application beta-reduction, the type-distributivity rule nor the type linearity rules, then
‖t‖ →v ‖r‖. �

Another important lemma is the typability preservation: the translation of a typed term has a type
which entails that the translation will be strongly normalising. The proof is done by induction on the
last rule applied to derive the type. cf. Appendix F.6

Lemma 7.3.5 (Typability preservation). If Γ ` t :T , then ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖. �

Then, using the two previous lemmas we can state the strong normalisation of Lineal .

Theorem 7.3.6 (Strong normalisation). If Γ ` t :T is derivable in Lineal , then t is strongly normalising.

75

7. Lineal : a vectorial type system in Church style

Proof. Let Γ ` t :T , then by Lemma 7.3.5, ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖, and so by Theorem 5.4.4,
‖t‖ is strongly normalising. Assume t is not strongly normalising, say t → t1 → t2 · · · . Then by
Lemma 7.3.4, ‖t‖ →=

v ‖t1‖ →=
v ‖t2‖ →=

v · · · . Since ‖t‖ is strongly normalising, there exists n such that
∀i ≥ n, ‖ti‖ = ‖ti+1‖. By Lemma 7.3.4 it means that ∀i ≥ n, the reduction ti → ti+1 can be only one of
the type application beta-reduction, the type-distributivity rule or the type linearity rules. We define a
positive measure on terms and show that these rules are strictly decreasing with respect to the measure,
so t has to be strongly normalising.

Consider the following measure:

|x : U | = |0| = |λx : U.t| = 1 |t + r| = 2 + |t|+ |r|
|(t) r| = |t|+ |r| |ΛX.t| = |t|
|α.t| = 1 + |t| |t@(

∑n
i=1 Ui)| = 1 + 2|t|

We proceed by checking case by case to show that the mentioned rules are strictly decreasing on this
measure (cf. Appendix F.7). �

7.4 Example: the Hadamard gate

The Hadamard gate (cf. Section 1.1 for its formal definition), can be encoded in this setting as follows.
First, we name some specific terms and types which will allow to express the Hadamard gate in a more
friendly way.

The identity type will be written as I = ∀X.X → X and the term I = ΛX.λx : X.x. We use the idea
of cannon and co-cannon first presented in Section 1.2.2: [t] = λz : I.t, with z : I a fresh variable, and
{t} = (t) I. So {[t]} → t. Analogously, we write a cannon for types as [T] = I → T , so Γ ` t :T implies
Γ ` [t] : [T].

We also give the following encoding for booleans. First, we name the following types: T = ∀X.∀Y.X →
Y → X and F = ∀X.∀Y.X → Y → Y . Then, using the standard encoding for booleans, true =
ΛX.ΛY.λx : X.λy : Y.x and false = ΛX.ΛY.λx : X.λy : Y.y, we get ` true :T and ` false :F. Also, we
can encode combinations of them, e.g. |+〉 = 1√

2
.(true+ false), and |−〉 = 1√

2
.(true− false); so ` |+〉 :�

and ` |+〉 :�; where � = 1√
2
.(T + F) and � = 1√

2
.(T− F).

Finally, we encode the Hadamard gate, and call it H, as follows:

had = λx : [�]→ [�]→ Z.(((x) [|+〉]) [|−〉])

H = ΛZ.had

To simplify notation, we define two more terms: T = λx : [�].λy : [�].x and F = λx : [�].λy : [�].y.
So, (true@[�])@[�]→ T, (false@[�])@[�]→ F, ` F : [�]→ [�]→ [�] and ` T : [�]→ [�]→ [�].

Now, the application of the Hadamard gate to the qubit |+〉 is encoded as follows:

{(H)@([�] + [�]) (|+〉@[�])@[�]}
→∗ { 1√

2
.((H)@([�] + [�]) (true@[�])@[�] + (H)@([�] + [�]) (false@[�])@[�])}

→∗ { 1√
2
.((H)@([�] + [�]) T + (H)@([�] + [�]) F)}

→∗ { 1√
2
.((λx : [�]→ [�]→ [�].(((x) [|+〉]) [|−〉]) T + (λx : [�]→ [�]→ [�].(((x) [|+〉]) [|−〉]) F)}

→∗ { 1√
2
.((((T) [|+〉]) [|−〉]) + (((F) [|+〉]) [|−〉]))}

→∗ { 1√
2
.([|+〉] + [|−〉])}

→∗ 1√
2
.(|+〉+ |−〉)

→∗ true

76

7. Lineal : a vectorial type system in Church style

We show that this term has type T, as expected. Let Γ = {x : [�]→ [�]→ Z}

ax
Γ ` x : [�]→ [�]→ Z Γ ` [|+〉] : [�]

→E
Γ ` (x) [|+〉] : [�]→ Z Γ ` [|−〉] : [�]

→E
Γ ` ((x) [|+〉]) [|−〉] :Z

→I
` had : ([�]→ [�]→ Z)→ Z

∀I
` H :∀Z.([�]→ [�]→ Z)→ Z

@I
` H@([�] + [�]) : (∀Z.([�]→ [�]→ Z)→ Z)@([�] + [�])

Also,
` |+〉 :�

�
` |+〉 : 1√

2
.∀X.∀Y.X → Y → X +

1√
2
.∀X.∀Y.X → Y → Y

== ∀E
` |+〉@[�] :

1√
2
.∀Y.[�]→ Y → [�] +

1√
2
.∀Y.[�]→ Y → Y

=== ∀E
` (|+〉@[�])@[�] :

1√
2
.[�]→ [�]→ [�] +

1√
2
.[�]→ [�]→ [�]

Now we prove ` {(H@([�] + [�])) (|+〉@[�])@[�]} :T.

` H@([�] + [�]) : (∀Z.([�]→ [�]→ Z)→ Z)@([�] + [�])

` (|+〉@[�])@[�] : 1√
2
.[�]→ [�]→ [�] +

1√
2
.[�]→ [�]→ [�]

→E

` (H@([�] + [�])) (|+〉@[�])@[�] :
1√
2
.[�] +

1√
2
.[�] ` I : I

→E

` {(H@([�] + [�])) (|+〉@[�])@[�]} :
1√
2
.�+

1√
2
.�
�

` {(H@([�] + [�])) (|+〉@[�])@[�]} :T

7.5 Conclusion
In this chapter, we have defined Lineal : an explicitly typed algebraic λ-calculus, based on λlin and
Vectorial , with subject reduction and strong normalisation. The language allows making arbitrary linear
combination of λ-terms α.t+β.r. The type system is a fine-grained analysis tool describing the “vectorial”
properties of the terms: it keeps track of the ‘amplitude of a term’, i.e. if t and u both have the same
type U , then α.t + β.u has type (α + β).U . Also, it keeps track of the ‘direction of a term’, i.e. if t
and u have types U and V respectively, then α.t + β.u has type α.U + β.V . This calculus is able to
encode matrices and vectors just as Vectorial does, but unlike Vectorial , its type system has the subject
reduction property.

The problems depicted in Chapter 5 were solved here by using explicit types in the terms, and a
subtyping system.

The resulting system has the property that if a term t has type
∑
i αi.Ui, then there exists t′ =∑

i αi.bi such that t→∗ t′, where each bi is a base term of type Ui.

77

7. Lineal : a vectorial type system in Church style

78

Chapter 8

Conclusions and future work

Résumé du Chapitre

Dans ce chapitre, nous résumons les contributions de cette thèse, et nous proposons quelques
pistes pour de futurs travaux.

In this thesis we had developed a confluent, strongly normalising, typed algebraic λ-calculus, called
Lineal . The calculus is an extension of explicitly-typed System F with arbitrary linear combination of
terms: if t and u are two terms, α.t+β.u is also a term, where α and β belongs to a commutative ring

and “ .” denotes the scalar multiplication. If we consider the normal form of the terms forming a base of
an infinite vectorial space of normalised terms, then linear combinations of these terms in the base, the
“base terms”, give us the vectors of the space. Since the calculus is strongly normalising (Theorem 7.3.6),
any term in the calculus will reduce to a vector in this space. The type system gives us the shape of
this vector: a term α.t+ β.r, will have type α.T + β.R (or something “smaller”, according to an ordering
which morally just adds zeros), as stated by the following Lemma:
Lemma 7.2.2 (Generation lemmas). Let S be a type, α a scalar, Γ a typing context and t and r terms.

5. If Γ ` t + r :S, then there exist types T and R such that Γ ` t :T , Γ ` r :R and T +R � S.

6. If Γ ` α.t :R, then there exists a type T such that Γ ` t :T and α.T � R.

Another feature of Lineal is that the types are preserved by reduction:
Theorem 7.2.1 (Subject Reduction). For any terms t, t′, any context Γ and any type T , if t→ t′ then
Γ ` t :T ⇒ Γ ` t′ :T .
Thus, we can state that:

If a term t has normal form
∑n
i=1 αi.bi, then its type is

∑n
i=1 αi.Ui, where Ui is the type of bi.

(where the type is padded with some 0s).
Analogously, a trivial induction give us the inverse:

If a term t has type
∑n
i=1 αi.Ui, where the Ui are not type abstractions or applications, then t reduces

to
∑n
i=1 αi.bi, where bi has type Ui.

This time, padding the term with some 0’s.

8.1 Summary
While seeking the correct definition of Lineal , we have developed several type systems, tackling one
challenge at a time. Although these type systems were meant as intermediate steps, each is interesting
in itself.

The Scalar type system. This system may have interesting applications for barycentric or probabilistic
computing, i.e. when the amplitudes of the normal forms are required to sum to one. Indeed by doing
small modifications to the system, obtaining the system B, we were able to prove the following Theorem.
Theorem 3.4.3. Let Γ ` t :A be well-formed, then t↓ has the barycentric property.

79

8. Conclusions and future work

The Additive type system. This system serves one purpose: to show the connection between the
additive fragment of the algebraic λ-calculus λlin , and System F . This connection helped proving strong
normalisation for Additive itself, and for the λCA calculus which followed. Since several presentations
of calculi associated with the differential lambda calculus [Ehrhard and Regnier, 2003] are carried out
with sums but without scalars, this connection becomes an interesting piece of analysis for this strand of
algebraic calculi. We have set up a translation where sum types translate into pairs, and the translation
shows how the commutative and associative properties of addition can be simulated with pairs, by making
them explicit.

The Vectorial type system. This system showed the need to move to explicit types. With implicit
types, the factorisation reduction rules (e.g. α.t+β.t→ (α+β).t) are the cause of a fundamental problem:
since this is an extension of System F , there is no principal type, and so t can have two unrelated types,
T and T ′, which cannot be “unified”. Thus, (α+ β).t would have to have type α.T + β.T ′, which fails to
reveal the structure of the vector. In order to avoid this problem we have set up a type system without
subject reduction: α.t + β.t has type α.T + β.T ′, but (α + β).t has both (α + β).T and (α + β).T ′

as types. We thus defined an order relation, which roughly states that if T and T ′ are types for the
same term, then (α + β).T � α.T + β.T ′. We then obtained a weak subject reduction where the types
are preserved up to this relation. This system is a proof-of-concept, serving to reveal this surprising
absence of a one-to-one correspondence between the implicitly-typed and explicitly-typed calculus in
this algebraic setting. Another interesting contribution which arose from this setting was a novel proof
of strong normalisation: The proof of strong normalisation of Scalar is based on the proof of strong
normalisation of λ2la, which is a straightforward extension of System F . Once this extension was proven
strongly normalising, only a translation from typed terms in Scalar to typed terms in λ2lapreserving
reducibility, had to be defined. The same is true for Additive: the translation to System F was also used
to prove that it is strongly normalising. For Vectorial , however, there was no easy way to translate the
terms to a strongly normalising system, and thus a new proof was developed. This proof is a non trivial
extension of the classical proof using reducibility candidates. This have set up the basis for the proofs in
the subsequent systems, by showing that they can be translated to Vectorial in a reducibility-preserving
manner.

The λCA calculus. The Lineal calculus not only gives us a fine-grained type system revealing the
structure of terms, but also gives us confluence in a simplified algebraic λ-calculus. The original λlin had
several restrictions to prevent non-terminating terms from causing a loss of confluence in this algebraic
setting, however, if we are interested only in this restriction, the full Lineal calculus may seen somewhat
an overkill. Still, none of the previous systems achieve this: Scalar does not have a vector space of
normalised terms, terms being added have to have the same type up to the scalars. Additive is for just
a fragment of the calculus, and Vectorial is again as complex as Lineal . Therefore there enters the λCA

calculus, an alternative type system giving us strong normalisation, and hence a simplified set of rules,
with a reasonably simple setting. The type system also gives us some information of terms, which, while
not being as accurate as Lineal , provides lower bounds of their scalars.

8.2 Future directions

The next paragraphs will unravel directions for future work. As such, they contain several unproven
intuitions, i.e. tentative connections. However we strongly believe that some of them can be formalised,
and so listing them is a element of judgement of the potential outcomes of this thesis, as well as an aid
for future researchers embracing the topic of vectorial types.

8.2.1 Semantics and Differentiation

In Chapter 2 we have formalised connections between λlin and λalg . These connections suggest some
work that can be done: λlin and Lineal still lack a full formal denotational semantics. A first step has
been made in [Valiron, 2010], however this is preliminary in comparison with the many more results on
the denotational semantics of λalg and related systems, e.g. [Ehrhard, 2005, Tasson, 2009]. A study of

80

8. Conclusions and future work

the invariability of those semantics by the call-by-name/call-by-value simulation proposed in Chapter 2
could therefore lead to a denotational semantics for Lineal .

Another possible way to exploit this connection is in order to relate λlin to the differential λ-calculus
[Ehrhard and Regnier, 2003], a calculus that introduces a differential operator which induces a Taylor
expansion for terms [Ehrhard, 2010], among other interesting results. It was from this differential λ-
calculus that the addition in λalg came about. Indeed, λalg can be seen as the differential λ-calculus
without a differential operator. Thus the question of whether is possible to program an analogous operator
in λlin arises.

8.2.2 A quantum calculus

The Lineal calculus can be seen as a first step towards a quantum calculus, but while in Lineal any vector
is allowed, in quantum computing we must restrict these vectors to be of norm one: α.b1 + β.b2 is a
valid vector only if α and β are complex numbers such that |α|2 + |β|2 = 1. Notice that this is the case
only when b1 6= b2; indeed if b1 = b2, the restriction would be |α+ β|2 = 1. Notice that b1 and b2 are
members of the base of the vectorial space, and two different basis vectors are orthogonal by definition.
But in general, for non-basis vectors, the condition that needs to be checked is orthogonality.

Given an orthogonality definition, we would need to change rule +I in order to account for the
restriction to vectors of norm one:

Γ ` t :T Γ ` r :R |α|2 + |β|2 = 1 t ⊥ u
+⊥

Γ ` α.t + β.u :α.T + β.R

Γ ` t :T Γ ` r :R |α+ β|2 = 1 t ‖ u
+‖

Γ ` α.t + β.u :α.T + β.R

A natural way to define orthogonality is to define first an inner product between terms.

Definition 8.2.1 (Inner product between closed terms). Let b1 and b2 be either closed, reduced base
terms, or the term 0.

〈b1|b2〉 = 〈b2|b1〉 =

{
0 if b1 6= b2

1 if b1 = b2

〈α.t + β.s|r〉 = α× 〈t|r〉+ β × 〈s|r〉
〈t|s〉 = 〈s|t〉 = 〈t↓|s↓〉

For example, we have 〈(λx : U.x) vU |vU 〉 = 1 and 〈true|false〉 = 0. It also works for more elaborated
examples:

〈 1√
2
.true +

1√
2
.false|true〉 =

1√
2
× 〈true|true〉+

1√
2
× 〈false|true〉 =

1√
2

Then we can of course define t ⊥ s⇔ 〈t|s〉 = 0, and some similar definition for parallelism. However,
our challenge is a harder one still: we must check this properties using types. Indeed, the definition of inner
product needs to reduce the term (remember that the vectorial space is defined only over normal forms
terms), and typing is useless if it requires prior reduction. Thus assume we have an analogous definition of
orthogonality between types; we want it to have the property: if ` t :T and ` r :R, then t ⊥ r⇔ T ⊥ R.
Alas it cannot be that simple, for example true and false have both type X → X → X. However, an
encouraging point is that since Lineal is explicitly typed, we can expect to have T ⊥ R⇒ t ⊥ r.

Once the norm one terms are properly characterised, one could expect to be able to add a measurement
operator à la [Díaz-Caro, 2007, Arrighi, Díaz-Caro, Gadella, and Grattage, 2011a].

8.2.3 Logics

The type systems presented in this thesis could also lead to different algebraic logics: the barycentric
restriction to Scalar could lead to a barycentric or probabilistic logic. Vectorial and Lineal could induce
a vectorial logic, where logic formulae form a vectorial space. The quantum calculus suggested above
could also lead to a novel formulation of a quantum logic formally connected with quantum computing.
These logics would then need to be compared with linear logic, in particular with respect to the different
kinds of linearity involved. Indeed, linear logic introduces a linearity which is based on resources, whereas

81

8. Conclusions and future work

algebraic calculi uses the classic concept of algebraic linearity. The question is whether these linearities
are the same, or if they can be compared in some way.

For the sake of exemplifying, we take Scalar (cf. Chapter 3) which is one of the simplest systems
developed in this thesis. Consider the “logic” defined from Scalar : the logical propositions are the types;
the sequents are the contexts plus the types; the logical rules are obtained simply by erasing the terms
from the typing rules; the proofs are obtained simply by erasing the terms from the type derivation trees
– or equivalently by applying the logical rules upon the logical propositions. We call it Scalar logic, and
denote SL. We now show that proofs in SL enjoy a no-cloning property.

First we need to define what we mean by proof method. For this, consider R be a SL rule, where
some information is added to make it deterministic: for example, we write sI [α] for sI , when the scalar
introduced is α, and so on. That is, for any sequents Qi, Q′i, with i = 1, . . . , n, such that ∀i, Qi ≡ Q′i, we
make sure that {

Q1, . . . , Qn
R

S
∧
Q′1, . . . , Q

′
n
R

S′

}
⇒ S ≡ S′

Hence if Π is a tree with nodes labelled by deterministic names of SL logical rules, then one may think
of Π as a function from sequents to proofs, i.e. a proof method:

Definition 8.2.2. We define recursively the concept of proof method of order n to be the set of functions
Πn which take the following form:

Π0(S) = S

Πn(S) =
Πn−1(S)

R
P

or
Πk(S) πh

R
P

or
πk Πh(S)

R
P

where S is a sequent, πn is a constant proof of size n, max{k, h} = n− 1, R is a logical rule, and P is a
sequent such that the resulting proof is well-formed.

We denote by C(Πn(S)) the conclusion (root) of the proof Πn(S).

A no-cloning theorem (cf. Theorem 1.1.1) can be defined in terms of proof methods, and the way
they treat scalars, i.e. there is no generic proof method able to take a sequent with a scalar in its type
as argument, and return a sequent where such a scalar appears more than once in the type (proof in
Appendix G.1).

Theorem 8.2.3 (No-cloning of scalars). @Πn such that ∀α,C(Πn(Γ ` α.U)) = ∆ ` (δ × αs + γ).V with
δ 6= 0 and γ constants in S, s ∈ N>1 and U, V unit formulas.

Notice that α is a member of a ring and s is a natural number, so αs is just the multiplication of α
by itself s times.

We can reformulate this theorem to look more like a no-cloning theorem in the following way. Let
T ⊗ T stand for the usual encoding of tuples1.

Corollary 8.2.4 (No-cloning Theorem). @Πn such that ∀T,Πn(Γ ` T) is a witness of Γ ` T ⇒ ∆ ` T⊗T .

Proof. By Lemma 3.2.2, ∃α,U such that T ≡ α.U , so T ⊗T ≡ α.U ⊗α.U ≡ α2.(U ⊗U) = (1× (1×α2 +
0)).(U ⊗ U). Then by Theorem 8.2.3 the corollary holds. �

Hence our no-cloning allows the existence of a proof method Π such that Π(Γ ` T) has conclusion
Γ ` T ⇒ ∆ ` T⊗T , but it does not allow the same proof method Π to accomplish this for any proposition
T . Informally, this property states that SL has no fixed proof method for duplicating a proposition.

Clearly SL, unlike linear logic (LL) [Girard, 1987], does not refrain us from duplicating resources.
Yet we have been able to prove a no-cloning theorem for SL. How can we make sense of this apparent
contradiction? Consider the copying machine ` λx.x ⊗ x : ∀X.X → X ⊗X, and let A ≡ α.U , then this
machine allows:

===========================
` α.λx.x⊗ x :α.∀X.X → (X ⊗X)

∀E
` α.λx.x⊗ x :α.U → U ⊗ U

·····

` t :α.U ≡ A
→E

` (α.λx.x⊗ x) t :α2.(U ⊗ U) ≡ A⊗A
1Formally, to allow such an encoding for general types, we need to add the following equivalence (α.U)→ T ≡ α.(U → T).

82

8. Conclusions and future work

This proof tree yields A⊗A from a single proof of A, which needs be plugged as the right branch of the
tree. However the symbol A appears also in the right branch of the tree; hence the proof method that
duplicates A crucially depends on A. It is on this basis that our no-cloning theorem is formulated; our no-
cloning allows the existence of a proof method Π such that Π(Γ ` T) has conclusion Γ ` T ⇒ ∆ ` T ⊗T ,
but it does not allow the same proof method Π to work for any type. This way of phrasing no-cloning
must probably hold in LL as well, but it is not usually contemplated. SL emphasises this property, which
seems more in line with quantum theory than the straightforward non-duplication of resources of LL.
Indeed, quantum theory states that it is not possible to have a universal cloning machine, but does allow
cloning machines of specific vectors.

Notice that, because the differentiation between general types and unit types, the correspondence
between hypothesis in a derivation tree and direct implication by arrow introduction, is broken. Indeed,
take a derivation tree starting with a formula T corresponding to a general type as hypothesis, and
concluding with another formula R. In many classical logics one could derive T ⇒ R, however it is not
the case in any of the logics induced by the type systems presented in this thesis. T ⇒ R is valid only
when T is a unit type. So, we have two kinds of implications, the one coming from arrow types, and the
general one obtained from lifting a hypothesis.

In fact, technically speaking what we are saying is that if we assume an unknown formula as hypothesis,
we cannot derive an implication from it. Nevertheless, some modifications could be introduced to Lineal
in order to allow this kind of implications. In particular, we could introduce a new kind of non-base type
A+ and see the consequences. The first point is that, as discussed in Section 3.1, we cannot allow any
type at the left hand side of an arrow without breaking the correspondence between scalar in the term and
scalar in the type. This is unless the type A+ is used only once in the function. Arrow introduction could
therefore be relaxed to allow this exception. This proposed change seems to relate the A+ types with
the linear resources in linear logic. Formalising this ideas could provide a link between Lineal and linear
logic, which would connect the concept of resources in LL to the concept of unknown linear combinations
in Lineal . This could provide a new algebraic interpretation of linear logic, in an alternative setting to
the model approach, i.e. within an algebraic logic.

83

8. Conclusions and future work

84

Appendices

85

Appendix A

Proofs from Chapter 2

A.1 Proof of Lemma 2.2.2
Lemma 2.2.2 (Local confluence). The four languages in Figure 2.1 are locally confluent.

Proof.

• If t→ r and t→ r′, using only algebraic rules, then this has been already proven in Lemma 2.2.1.

• If t→ r and t→ r′, using only beta-reduction, this is a trivial extension of the confluence of lambda
calculus.

• If t→ r by an algebraic rule and t→ r′ by beta reduction, then in λlin a term of the form (λx.t′) b
has to be a subterm of t, since t beta-reduces. Note that t′ cannot reduce since it is under a lambda
and b cannot reduce since it is a base term. Then the beta-reduction and the algebraic-reduction
are independent in λlin , and so this result is trivial. In λalg a term of the form (λx.t′) r has to be a
subterm of t. Note that t′ cannot reduce since it is under a lambda and r cannot reduce since it is
an argument. Then again the beta-reduction and the algebraic-reduction are independent in λalg ,
and so this result is trivial.

�

A.2 Proof of Lemma 2.3.5
Lemma 2.3.5. Jt[b/x]K = JtK[Ψ(b)/x] with b a base term.

Proof. Structural induction on t.

• t = x. Cases:

– b = y. Then t[b/x] = y, so Jt[b/x]K = λf. (f) y = λf. (f) x[y/x] = JtK[Ψ(b)/x].
– b = λy.r. Then Jt[b/x]K = λf. (f) λy.JrK = λf. (f) x[λy.JrK/x] = JtK[Ψ(b)/x].

• t = y. Then Jt[b/x]K = JtK[Ψ(b)/x] = JtK.

• t = 0. Analogous to previous case.

• t = λy.r. Then

J(λy.r)[b/x]K = Jλy.(r[b/x])K
= λf. (f) λy.Jr[b/x]K

by the induction hypothesis
= λf. (f) λy.JrK[Ψ(b)/x]

= (λf. (f) λy.JrK)[Ψ(b)/x]

= JtK[Ψ(b)/x]

87

Appendix A. Proofs from Chapter 2

• t = (r1) r2. Then

Jt[b/x]K = J((r1) r2)[b/x]K
= J(r1[b/x]) r2[b/x]K
= λf.(Jr1[b/x]K) λg.(Jr2[b/x]K) λh.((g) h) f

by the induction hypothesis
= λf.(Jr1K[Ψ(b)/x]) λg.(Jr2K[Ψ(b)/x]) λh.((g) h) f

= λf.(Jr1K) λg.(Jr2K) λh.((g) h) f [Ψ(b)/x]

= J(r1) r2K[Ψ(b)/x]

= JtK[Ψ(b)/x]

• t = α.r. Then

Jt[b/x]K = J(α.r)[b/x]K
= Jα.(r[b/x])K
= λf.(α.Jr[b/x]K f)

by the induction hypothesis
= λf.(α.JrK[Ψ(b)/x] f)

= (λf.(α.JrK f))[Ψ(b)/x]

= Jα.rK[Ψ(b)/x]

= JtK[Ψ(b)/x]

• t = r1 + r2. Then

Jt[b/x]K = J(r1 + r2)[b/x]K
= Jr1[b/x] + r2[b/x]K
= λf.((Jr1[b/x]K + Jr2[b/x]K) f)

by the induction hypothesis
= λf.((Jr1K[Ψ(b)/x] + Jr2K[Ψ(b)/x]) f)

= (λf.((Jr1K + Jr2K) f))[Ψ(b)/x]

= Jr1 + r2K[Ψ(b)/x]

= JtK[Ψ(b)/x]
�

A.3 Proof of Lemma 2.3.13

Lemma 2.3.13. If b is a base term, then for any t, (JtK) b→∗a+βt : b.

Proof. Structural induction on t.

• t = x. Then (JxK) b = (λf. (f) x) b→a+β(b) x = x : b.

• t = λx.r. Then (Jλx.rK) b = (λf. (f) λx.JrK) b = (λf. (f) Ψ(λx.r)) b→a+β(b) Ψ(λx.r) = λx.r : b.

• t = 0. Then (J0K) b = (0) b→a+β0 = 0 : b.

• t = t′+r. Then (Jt′ + rK) b = (λf.(Jt′K+ JrK) f) b→a+β(Jt′K+ JrK) b→a+β(Jt′K) b+(JrK) b which
→a+β-reduces by the induction hypothesis to t′ : b + r : b = t′ + r : b.

• t = α.r. Then (Jα.rK) b = (λf.(α.JrK) f) b→a+β(α.JrK) b→a+βα.(JrK) b) which →a+β-reduces by
the induction hypothesis to α.(r : b) = α.r : b.

88

Appendix A. Proofs from Chapter 2

• t = (t′) r. Then (J(t′) rK) b = (λf.(Jt′K) λg.(JrK) λh.((g) h) f) b→a+β(Jt′K) λg.(JrK) λh.((g) h) b.
Note that λg.(JrK) λh.((g) h) b is a value, so by the induction hypothesis the above term re-
duces to t′ : λg.(JrK) λh.((g) h) b. We do a second induction, over t′, to prove that t′ :
λg.(JrK) λh.((g) h) b→a+β(t′) r : b.

– If t′ = (t1) t2, then t′ : λg.(JrK) λh.((g) h) b = ((t1) t2) r : b = (t′) r : b.

– If t′ is a base term, then t′ : λg.(JrK) λh.((g) h) b = (λg.(JrK) λh.((g) h) b) Ψ(t′) which→a+β-
reduces to (JrK) λh.((Ψ(t′)) h) b which →a+β-reduces by the main induction hypothesis to
r : λh.((Ψ(t′)) h) b = (t′) r : b.

– If t′ = α.t1, then t′ : λg.(JrK) λh.((g) h) b = α.t1 : λg.(JrK) λh.((g) h) b = α.(t1 :
λg.(JrK) λh.((g) h) b) which →a+β-reduces by the second induction hypothesis to α.((t1) r :
b) = (α.t1) r : b = (t′) r : b.

– If t′ = t1 + t2, then t′ : λg.(JrK) λh.((g) h) b = t1 + t2 : λg.(JrK) λh.((g) h) b = t1 :
λg.(JrK) λh.((g) h) b+ t2 : λg.(JrK) λh.((g) h) b which→a+β-reduces by the second induction
hypothesis to (t1) r : b + (t2) r : b = (t1 + t2) r : b = (t′) r : b.

– If t′ = 0 then t : λg.(JrK) λh.((g) h) b = 0 : λg.(JrK) λh.((g) h) b = 0 = (0) r : b = (t′) r : b
�

A.4 Proof of Lemma 2.3.14
Lemma 2.3.14. If t→`r then ∀b base term, t : b→∗ar : b.

Proof. Case by case on the rules →`.

Rules Ar

• (b′) (t + r)→`(b
′) t + (b′) r, with b′ being a base term. Then (b′) (t + r) : b = t + r :

λf.((Ψ(b′)) f) b = t : λf.((Ψ(b′)) f) b + r : λf.((Ψ(b′)) f) b = (b′) t : b + (b′) r : b =
(b′) t + (b′) r : b.

• (b′) α.t→`α.(b
′) t, with b′ base term. Then (b′) α.t : b = α.t : λf.((Ψ(b′)) f) b = α.(t :

λf.((Ψ(b′)) f) b) = α.((b′) t : b) = α.(b′) t : b.

• (b′) 0→`0, with b′ a base term. Then (b′) 0 : b = 0 : λf.((Ψ(b′)) f) b = 0 = 0 : b.

Rules Al

• (t + r) v→`(t) v + (r) v, with v being a value. Then (t + r) v : b = (t) v + (r) v : b.

• (α.t) v→`α.(t) v), with v being a value. Then (α.t) v : b = α.(t) v : b.

• (0) v→`0, with v a value. Then (0) v : b = 0 = 0 : b.

Rules F and S

• α.(t+r)→`α.t+α.r. Then α.(t+r) : b = α.(t : b+r : b)→aα.(t : b)+α.(r : b) = α.t+α.r : b.

• α.t+β.t→`(α+β).t. Then α.t+β.t : b = α.(t : b)+β.(t : b)→a(α+β).(t : b) = (α+β).t : b.

• α.t + t→`(α + 1).t. Then α.t + t : b = α.t : b + t : b = α.(t : b) + t : b→a(α + 1).(t : b) =
(α+ 1).t : b.

• t + t→`(1 + 1).t. Then t + t : b = t : b + t : b→a(1 + 1).(t : b) = (1 + 1).t : b.

• 0 + t→`t. Then 0 + t : b = (0 : b) + (t : b) = 0 + (t : b)→at : b.

• α.(β.t)→`(α × β).t. Then α.(β.t) : b = α.(β.t : b) = α.(β.(t : b))→a(α × β).(t : b) =
(α× β).t : b.

• 1.t→`t. Then 1.t : b = 1.(t : b)→at : b.

• 0.t→`0. Then 0.t : b = 0.(t : b)→a0 = 0 : b.

• α.0→`0. Then α.0 : b = α.(0 : b) = α.0→a0 = 0 : b.

Rules Asso and Com

89

Appendix A. Proofs from Chapter 2

• t+ (r+ s)→`(t+ r) + s. Then t+ (r+ s) : b = t : b+ (r+ s : b) = t : b+ (r : b+ s : b)→a(t :
b + r : b) + s : b = t + r : b + s : b = (t + r) + s : b.

• t + r→`r + t. Then t + r : b = t : b + r : b→ar : b + t : b = r + t : b.

Rules ξ and ξλlin
Assume M→`t

′, and assume that for all b base term, t : b→∗at′ : b. We show that
the result also holds for each contextual rule.

• t + r→`t
′ + r. Then t + r : b = t : b + r : b→∗at′ : b + r : b = t′ + r : b.

• r + t→`r + t′, analogous to previous case.

• α.t→`α.t
′. Then α.t : b = α.(t : b)→∗aα.(t′ : b) = α.t′ : b.

• (v) t→`(v) t′. Case by case:

– v = b′. Then (b′) t : b = t : λf.((Ψ(b′)) f) b which →a-reduces by the induction
hypothesis to t′ : λf.((Ψ(b′)) f) b = (b′) t′ : b.

– v = 0. Then (0) t : b = 0 = (0) t′ : b.
– v = α.w. Then (α.w) t : b = α.(w) t : b = α.((w) t : b) which →a-reduces by the

induction hypothesis to α.((w) t′ : b) = α.(w) t′ : b = (α.w) t′ : b.
– v = v1 + v2. Then (v1 + v2) t : b = (v1) t + (v2) t : b = (v1) t : b + (v2) t : b which
→a-reduces by the induction hypothesis to (v1) t′ : b + (v2) t′ : b = (v1) t′ + (v2) t′ :
b = (v1 + v2) t′ : b.

• (t) r→`(t
′) r Case by case:

– t = b′. Absurd since a base term cannot reduce.
– t = α.t1. Case by case on the possible →`-reductions of t:
∗ t′ = α.t′1 with t1→`t

′
1. Then (α.t1) r : b = α.(t1) r : b = α.((t1) r : b) which by the

induction hypothesis →a-reduces to α.((t′1) r : b) = α.(t′1) r : b = (α.t′1) r : b.
∗ t = α.(β.t3) and t′ = (α × β).t3. Then (α.(β.t3)) r : b = α.(β.((t3) r : b))→a(α ×
β).((t3) r : b) = ((α× β).t3) r : b.
∗ t = α.(s1 + s2) and t′ = α.s1 +α.s2. Then (α.(s1 + s2)) r : b = α.((s1) r : b+ (s2) r :
b)→aα.((s1) r : b) + α.((s2) r : b) = (α.s1 + α.s2) r : b.
∗ α = 1 and t′ = t1. Then (1.t1) r : b = 1.((t1) r : b)→a(t1) r : b.
∗ α = 0 and t′ = 0. Then (0.t1) r : b = 0.((t1) r : b)→a0 = (0) r : b.
∗ t1 = 0 and t′ = 0. Then (α.0) r : b = α.((0) r : b) = α.0→a0 = (0) r : b.

– t = t1 + t2. Case by case on the possible →`-reductions of t:
∗ t′ = t′1 + t2 with t1→`t

′
1. Then (t1 + t2) r : b = (t1) r : b + (t2) r : b which by the

induction hypothesis →a-reduces to (t′1) r : b + (t2) r : b = (t′1 + t2) r : b.
∗ t′ = t1 + t′2 with t2→`t

′
2. Analogous to previous case.

∗ t2 = s1 + s2 and t′ = (t1 + s1) + s2. Then (t1 + (s1 + s2)) r : b = (t1) r : b+ ((s1) r :
b + (s2) r : b)→a((t1) r : b + (s1) r : b) + (s2) r : b = ((t1 + s1) + s2) r : b.

∗ t1 = s1 + s2 and t′ = s1 + (s2 + t2). Analogous to previous case.
∗ t′ = t2 + t1. Then (t1 + t2) r : b = (t1) r : b + (t2) r : b→a(t2) r : b + (t1) r : b =

(t2 + t1) r : b.
∗ t1 = α.t3, t2 = β.t3 and t′ = (α + β).t3. Then (α.t3 + β.t3) r : b = α.((t3) r :
b) + β.((t3) r : b)→a(α+ β).((t3) r : b) = ((α+ β).t3) r : b.

∗ t1 = α.t3, t2 = t3 and t′ = (α+ 1).t3. Analogous to previous case.
∗ t1 = t2 and t′ = (1 + 1).t1. Analogous to previous case.

– t = 0. Absurd since 0 does not reduce.
– t = (t1) t2. Then ((t1) t2) r : b = (t1) t2 : λg.(JrK) λh.((g) h) b, which by the induction

hypothesis →a-reduces to t′ : λg.(JrK) λh.((g) h) b. We do a second induction, over t′, to
prove that t′ : λg.(JrK) λh.((g) h) b→a(t′) r : b.
∗ If t′ = (t′1) t′2, then t′ : λg.(JrK) λh.((g) h) b = ((t′1) t′2) r : b = (t′) r : b.
∗ t′ cannot be a base term since from (t1) t2 it is not possible to arrive to a base term

using only →`.

90

Appendix A. Proofs from Chapter 2

∗ If t′ = α.t′1, then t′ : λg.(JrK) λh.((g) h) b = α.t′1 : λg.(JrK) λh.((g) h) b = α.(t′1 :
λg.(JrK) λh.((g) h) b) which →a-reduces by the induction hypothesis to α.((t′1) r :
b) = (α.t′1) r : b = (t′) r : b.
∗ If t′ = t′1+t′2, then the term t′ : λg.(JrK) λh.((g) h) b = t′1+t′2 : λg.(JrK) λh.((g) h) b =
t′1 : λg.(JrK) λh.((g) h) b+t′2 : λg.(JrK) λh.((g) h) b which→a-reduces by the induction
hypothesis to (t′1) r : b + (t′2) r : b = (t′1 + t′2) r : b = (t′) r : b.

∗ If t′ = 0 then t′ : λg.(JrK) λh.((g) h) b = 0 : λg.(JrK) λh.((g) h) b = 0 = (0) r : b =
(t′) r : b

�

A.5 Proof of Lemma 2.3.15
Lemma 2.3.15. If t→`+βr then ∀b base term, t : b→∗a+βr : b.

Proof. Case by case on the rules of λlin .

Rule βb

(λx.t) b′ : b = b′ : λf.((Ψ(λx.t)) f) b

= (λf.((Ψ(λx.t)) f) b) Ψ(b′)

→βn ((Ψ(λx.t)) Ψ(b′)) b

= ((λx.JtK) Ψ(b′)) b

→βn JtK[Ψ(b)/x] b

(Lemma 2.3.5) = Jt[b/x]K b

(Lemma 2.3.13) →∗a+β t[b/x] : b

Algebraic rules If t→`r, then by Lemma 2.3.14 t : b→∗ar : b which implies that t : b→∗a+βr : b.

Rules ξ and ξλlin
If t→`t

′, then we use Lemma 2.3.14 to close the case. Assume t→βbt
′, and assume

that for all b base term, t : b→∗a+βt
′ : b. We show that the result also holds for each contextual

rule.

• t + r→βbt
′ + r. Then t + r : b = t : b + r : b→∗a+βt

′ : b + r : b = t′ + r : b.

• r + t→βbr + t′, analogous to previous case.

• α.t→βbα.t
′. Then α.t : b = α.(t : b)→∗a+βα.(t

′ : b) = α.t′ : b.

• (v) t→βb(v) t′. Case by case:

– v = b′. Then (b′) t : b = t : λf.((Ψ(b′)) f) b which →a+β-reduces by the induction
hypothesis to t′ : λf.((Ψ(b′)) f) b = (b′) t′ : b.

– v = 0. Then (0) t : b = 0 = (0) t′ : b.
– v = α.w. Then (α.w) t : b = α.(w) t : b = α.((w) t : b) which →a+β-reduces by the

induction hypothesis to α.((w) t′ : b) = α.(w) t′ : b = (α.w) t′ : b.
– v = v1 + v2. Then (v1 + v2) t : b = (v1) t + (v2) t : b = (v1) t : b + (v2) t : b which
→a+β-reduces by the induction hypothesis to (v1) t′ : b + (v2) t′ : b = (v1) t′ + (v2) t′ :
b = (v1 + v2) t′ : b.

• (t) r→βb(t
′) r Case by case:

– t = b′. Absurd since a base term cannot reduce.
– t = α.t1. The only possible →βb -reduction from t is t′ = α.t′1 with t1→βbt

′
1. Then

(α.t1) r : b = α.(t1) r : b = α.((t1) r : b) which by the induction hypothesis →a+β-
reduces to α.((t′1) r : b) = α.(t′1) r : b = (α.t′1) r : b.

– t = t1 + t2. Case by case on the possible →βb -reductions of t:
∗ t′ = t′1 + t2 with t1→βbt

′
1. Then (t1 + t2) r : b = (t1) r : b + (t2) r : b which by the

induction hypothesis →a+β-reduces to (t′1) r : b + (t2) r : b = (t′1 + t2) r : b.

91

Appendix A. Proofs from Chapter 2

∗ t′ = t1 + t′2 with t2→βbt
′
2. Analogous to previous case.

– t = 0. Absurd since 0 does not reduce.
– t = (t1) t2. Then ((t1) t2) r : b = (t1) t2 : λg.(JrK) λh.((g) h) b, which by the induction

hypothesis →a+β-reduces to t′ : λg.(JrK) λh.((g) h) b. We do a second induction, over t′,
to prove that t′ : λg.(JrK) λh.((g) h) b→a+β(t′) r : b.
∗ If t′ = (t′1) t′2, then t′ : λg.(JrK) λh.((g) h) b = ((t′1) t′2) r : b = (t′) r : b.
∗ If t′ is a base term, then t′ : λg.(JrK) λh.((g) h) b = (λg.(JrK) λh.((g) h) b) Ψ(t′)

which→a+β-reduces to (JrK) λh.((Ψ(t′)) h) b which, by Lemma 2.3.13,→a+β-reduces
r : λh.((Ψ(t′)) h) b = (t′) r : b.

∗ If t′ = α.t′1, then t′ : λg.(JrK) λh.((g) h) b = α.t′1 : λg.(JrK) λh.((g) h) b = α.(t′1 :
λg.(JrK) λh.((g) h) b) which →a+β-reduces by the induction hypothesis to α.((t′1) r :
b) = (α.t′1) r : b = (t′) r : b.

∗ If t′ = t′1 + t′2, then t′ : λg.(JrK) λh.((g) h) b = t′1 + t′2 : λg.(JrK) λh.((g) h) b = t′1 :
λg.(JrK) λh.((g) h) b+t′2 : λg.(JrK) λh.((g) h) b which→a+β-reduces by the induction
hypothesis to (t′1) r : b + (t′2) r : b = (t′1 + t′2) r : b = (t′) r : b.

∗ If t′ = 0 then t′ : λg.(JrK) λh.((g) h) b = 0 : λg.(JrK) λh.((g) h) b = 0 = (0) r : b =
(t′) r : b

�

A.6 Proof of Lemma 2.3.20

Lemma 2.3.20. {|t[r/x]}| = {|t}| [{|r}| /x].

Proof. Structural induction on t.

• t = x. Then {|x[r/x]}| = {|r}| = x[{|r}| /x] = {|x}| [{|r}| /x].

• t = y. Then {|y[r/x]}| = y = {|y}| [{|r}| /x].

• t = 0. Analogous to previous case.

• t = λy.t′. Then

{|(λy.t′)[r/x]}| = {|λy.(t′[r/x])}|
= λf. (f) λy.{|t′[r/x]}|

by the induction hypothesis
= λf. (f) λy.{|t′}| [{|r}| /x]

= (λf. (f) λy.{|t′}|)[{|r}| /x]

= {|t}| [{|r}| /x]

• t = (r1) r2. Then

{|t[r/x]}| = {|((r1) r2)[r/x]}|
= {|(r1[r/x]) r2[r/x]}|
= λf.({|r1[r/x]}|) λg.((g) {|r2[r/x]}|) f

by the induction hypothesis
= λf.({|r1}| [{|r}| /x]) λg.((g) {|r2}| [{|r}| /x]) f

= (λf.({|r1}|) λg.((g) {|r2}|) f)[{|r}| /x]

= {|(r1) r2}| [{|r}| /x]

= {|t}| [{|r}| /x]

92

Appendix A. Proofs from Chapter 2

• t = α.t′. Then

{|t[r/x]}| = {|(α.t′)[r/x]}|
= {|α.(t′[r/x])}|
= λf.(α.{|t′[r/x]))}|) f

by the induction hypothesis
= λf.(α.{|t′}| [{|r}| /x]) f

= λf.(α.{|t′}|) f [{|r}| /x]

= {|α.t′}| [{|r}| /x]

= {|t}| [{|r}| /x]

• t = r1 + r2. Then

{|t[r/x]}| = {|(r1 + r2)[r/x]}|
= {|r1[r/x] + r2[r/x]}|
= λf.({|r1[r/x]}| + {|r2[r/x]}|) f

by the induction hypothesis
= λf.({|r1}| [{|r}| /x] + {|r2}| [{|r}| /x]) f

= λf.(({|r1}| + {|r2}|) f [{|r}| /x]

= {|r1 + r2}| [{|r}| /x]

= {|t}| [{|r}| /x]
�

A.7 Proof of Lemma 2.3.26
Lemma 2.3.26. If b is a base term, then for any closed term t, ({|t}|) b→∗`+βt : b.

Proof. Structural induction on t.

• t = λx.r. Then ({|λx.r}|) b = (λf. (f) λx.{|r}|) b = (λf. (f) Φ(λx.r)) b→`+β(b) Φ(λx.r) = λx.r : b.

• t = 0. Then ({|0}|) b = (λf.(0) f) b→`+β(0) b→`+β0 = 0 : b.

• t = t′ + r. Then ({|t′ + r}|) b = (λf.({|t′}| + {|r}|) f) b→`+β({|t′}| + {|r}|) b which →`+β-reduces by
the induction hypothesis to t′ : b + r : b = t′ + r : b.

• t = α.r. Then ({|α.r}|) b = (λf.(α.{|r}|) f) b→`+β(α.{|r}|) b→`+βα.({|r}|) b) which →`+β-reduces
by the induction hypothesis to α.(r : b) = α.r : b.

• t = (t′) r. Then ({|(t′) r}|) b = (λf.({|t′}|) λg.((g) {|r}|) f) b→`+β({|t′}|) λg.((g) {|r}|) b. Note that
λg.((g) {|r}|) b is a value, so by the induction hypothesis the above term reduces to t′ : λg.((g) {|r}|) b.
We do a second induction, over t′, to prove that t′ : λg.((g) {|r}|) b→∗`+β(t′) r : b.

– If t′ = (t1) t2, then t′ : λg.((g) {|r}|) b = ((t1) t2) r : b = (t′) r : b.

– If t′ is a base term, then t′ : λg.((g) {|r}|) b = (λg.((g) {|r}|) b) Φ(t′)→`+β((Φ(t′)) {|r}|) b =
(t′) r : b.

– If t′ = α.t1, then α.t1 : λg.((g) {|r}|) b = α.(t1 : λg.((g) {|r}|) b) which →∗`+β-reduces by the
induction hypothesis to α.((t1) r : b) = (α.t1) r : b = (t′) r : b.

– If t′ = t1 + t2, then t′ : λg.((g) {|r}|) b = t1 + t2 : λg.((g) {|r}|) b = t1 : λg.((g) {|r}|) b + t2 :
λg.((g) {|r}|) b which →∗`+β-reduces by the induction hypothesis to (t1) r : b + (t2) r : b =
(t1 + t2) r : b = (t′) r : b.

– If t′ = 0 then t′ : λg.((g) {|r}|) b = 0 : λg.((g) {|r}|) b = 0 = (0) r : b = (t′) r : b
�

93

Appendix A. Proofs from Chapter 2

A.8 Proof of Lemma 2.3.27
Lemma 2.3.27. If t→a+βr then ∀b base term, t : b→∗`+βr : b.

Proof. Case by case on the rules of λalg.

Rule βb

(λx.t) r : b = ((Φ(λx.t)) {|r}|) b

= ((λx.{|t}|) {|r}|) b

(since {|r}| is a base term) →`+β {|t}| [{|r}| /x] b

(Lemma 2.3.20) = {|t[r/x]}| b

(Lemma 2.3.26) →∗`+β t[r/x] : b

Rules A

• Let (t + r) s→a+β(t) s + (r) s. (t + r) s : b = ((t) s + (r) s) : b.

• Let (α.t) r→a+βα.(t) r. (α.t) r : b = α.(t) r : b.

• Let (0) r→a+β0. (0) r : b = 0 = 0 : b

Rules F and S

• α.(t + r)→a+βα.t + α.r. Then α.(t + r) : b = α.(t : b + r : b)→`+βα.(t : b) + α.(r : b) =
α.t + α.r : b.

• α.t + β.t→a+β(α + β).t. Then α.t + β.t : b = α.(t : b) + β.(t : b)→`+β(α + β).(t : b) =
(α+ β).t : b.

• α.t + t→a+β(α + 1).t. Then α.t + t : b = α.t : b + t : b = α.(t : b) + t : b→`+β(α + 1).(t :
b) = (α+ 1).t : b.

• t + t→a+β(1 + 1).t. Then t + t : b = t : b + t : b→`+β(1 + 1).(t : b) = (1 + 1).t : b.

• 0 + t→a+βt. Then 0 + t : b = (0 : b) + (t : b) = 0 + (t : b)→`+βt : b.

• α.(β.t)→a+β(α × β).t. Then α.(β.t) : b = α.(β.t : b) = α.(β.(t : b))→`+β(α × β).(t : b) =
(α× β).t : b.

• 1.t→a+βM . Then 1.t : b = 1.(t : b)→`+βt : b.

• 0.t→a+β0. Then 0.t : b = 0.(t : b)→`+β0 = 0 : b.

• α.0→a+β0. Then α.0 : b = α.(0 : b) = α.0→`+β0 = 0 : b.

Rules Asso and Com

• t + (r + s)→a+β(t + r) + s. Then t + (r + s) : b = t : b + (r + s : b) = t : b + (r : b + s :
b)→`+β(t : b + r : b) + s : b = t + r : b + s : b = (t + r) + s : b.

• t + r→a+βr + t. Then t + r : b = t : b + r : b→`+βr : b + t : b = r + t : b.

Rules ξ Assume t→a+βt
′, and assume that for all b base term, t : b→∗`+βt′ : b. We show that the

result also holds for each contextual rule.

• t + r→a+βt
′ + r. Then t + r : b = t : b + r : b→∗`+βt′ : b + r : b = t′ + r : b.

• r + t→a+βr + t′, analogous to previous case.

• α.t→a+βα.t
′. Then α.t : b = α.(t : b)→∗`+βα.(t′ : b) = α.t′ : b.

• (t) r→a+β(t′) r Case by case:

– t = b′. Absurd since a base term cannot reduce.
– t = α.t1. Case by case on the possible →a+β-reductions of t:
∗ t′ = α.t′1 with t1→a+βt

′
1. Then (α.t1) r : b = α.(t1) r : b = α.((t1) r : b) which by

the induction hypothesis →`+β-reduces to α.((t′1) r : b) = α.(t′1) r : b = (α.t′1) r : b.

94

Appendix A. Proofs from Chapter 2

∗ t = α.(β.t3) and t′ = (α× β).t3. Then (α.(β.t3)) r : b = α.(β.((t3) r : b))→`+β(α×
β).((t3) r : b) = ((α× β).t3) r : b.

∗ t = α.(s1 + s2) and t′ = α.s1 +α.s2. Then (α.(s1 + s2)) r : b = α.((s1) r : b+ (s2) r :
b)→`+βα.((s1) r : b) + α.((s2) r : b) = (α.s1 + α.s2) r : b.

∗ α = 1 and t′ = t1. Then (1.t1) r : b = 1.((t1) r : b)→`+β(t1) r : b.
∗ α = 0 and t′ = 0. Then (0.t1) r : b = 0.((t1) r : b)→`+β0 = (0) r : b.
∗ t1 = 0 and t′ = 0. Then (α.0) r : b = α.((0) r : b) = α.0→`+β0 = (0) r : b.

– t = t1 + t2. Case by case on the possible →a+β-reductions of t:
∗ t′ = t′1 + t2 with t1→a+βt

′
1. Then (t1 + t2) r : b = (t1) r : b + (t2) r : b which by

the induction hypothesis →`+β-reduces to (t′1) r : b + (t2) r : b = (t′1 + t2) r : b.
∗ t′ = t1 + t′2 with t2→a+βt

′
2. Analogous to previous case.

∗ t2 = s1 + s2 and t′ = (t1 + s1) + s2. Then (t1 + (s1 + s2)) r : b = (t1) r : b+ ((s1) r :
b + (s2) r : b)→`+β((t1) r : b + (s1) r : b) + (s2) r : b = ((t1 + s1) + s2) r : b.
∗ t1 = s1 + s2 and t′ = s1 + (s2 + t2). Analogous to previous case.
∗ t′ = t2 + t1. Then (t1 + t2) r : b = (t1) r : b+ (t2) r : b→`+β(t2) r : b+ (t1) r : b =

(t2 + t1) r : b.
∗ t1 = α.t3, t2 = β.t3 and t′ = (α + β).t3. Then (α.t3 + β.t3) r : b = α.((t3) r :
b) + β.((t3) r : b)→`+β(α+ β).((t3) r : b) = ((α+ β).t3) r : b.
∗ t1 = α.t3, t2 = t3 and t′ = (α+ 1).t3. Analogous to previous case.
∗ t1 = t2 and t′ = (1 + 1).t1. Analogous to previous case.

– t = 0. Absurd since 0 does not reduce.
– t = (t1) t2. Then ((t1) t2) r : b = (t1) t2 : λg.((g) {|r}|) b, which by the induction

hypothesis →`+β-reduces to t′ : λg.((g) {|r}|) b. We do a second induction, over t′, to
prove that t′ : λg.((g) {|r}|) b→∗`+β(t′) r : b.
∗ If t′ = (t′1) t′2, then t′ : λg.((g) {|r}|) b = ((t′1) t′2) r : b = (t′) r : b.
∗ If t′ is a base term, then t′ : λg.((g) {|r}|) b = (λg.((g) {|r}|) b) Φ(t′) which →`+β-

reduces to ((Φ(t′)) {|r}|) b = (t′) r : b.
∗ If t′ = α.t′1, then α.t′1 : λg.((g) {|r}|) b = α.(t′1 : λg.((g) {|r}|) b) which →∗`+β-reduces

by the induction hypothesis to α.((t′1) r : b) = (α.t′1) r : b = (t′) r : b.
∗ If t′ = t′1+t′2, then t′ : λg.((g) {|r}|) b = t′1+t′2 : λg.((g) {|r}|) b = t′1 : λg.((g) {|r}|) b+
t′2 : λg.((g) {|r}|) b which →∗`+β-reduces by the induction hypothesis to (t′1) r : b +
(t′2) r : b = (t′1 + t′2) r : b = (t′) r : b.

∗ If t′ = 0 then t′ : λg.((g) {|r}|) b = 0 : λg.((g) {|r}|) b = 0 = (0) r : b = (t′) r : b
�

A.9 COQ proof of Lemma 2.2.1
The proof of the local confluence of the algebraic fragments of λ→lin and λ→alg are sufficiently monotonous
so that one can ask a proof assistant to do them. For this purpose we use the library LocConf setting up
some convenient tactics. The interested reader can find the whole set of files in [Valiron, 2011a]:

• RW.v, ListTac.v and LocConfTac.v are the files containing the library;

• Llin.v and Lalg.v respectively contain the proofs for λ→lin and λ→alg .

To compile the files, you will need COQ v.8.2pl1. and the Ssreflect extension v.1.2. Proceed with a
flavour of:

$ coqc RW.v ListTac.v LocConfTac.v
$ coqc Llin.v
$ coqc Lalg.v

To check that no particular assumption were made, you can use

$ coqchk -o Llin
$ coqchk -o Lalg

95

Appendix A. Proofs from Chapter 2

A.9.1 Summary of the proof.

We summarise the content of Llin.v and Lalg.v. First we define the set of scalars.

Variable scalar : Set.

Variable Sadd : scalar -> scalar -> scalar.
Variable Smul : scalar -> scalar -> scalar.
Variable S0 : scalar.
Variable S1 : scalar.

Notation "A + B" := (Sadd A B) : scalar_scope.
Notation "A * B" := (Smul A B) : scalar_scope.

Open Scope scalar_scope.

Hypothesis S_0_1_dec : ~ S1 = S0.
Hypothesis S_0_lunit : forall a, S0 + a = a.
Hypothesis S_0_lelim : forall a, S0 * a = S0.
Hypothesis S_1_lunit : forall a, S1 * a = a.
Hypothesis S_rdistrib : forall a b c, a*(b+c) = (a*b)+(a*c).
Hypothesis S_ldistrib : forall a b c, (a+b)*c = (a*c)+(b*c).
Hypothesis S_add_assoc : forall a b c, (a+b)+c = a+(b+c).
Hypothesis S_mul_assoc : forall a b c, (a*b)*c = a*(b*c).
Hypothesis S_add_commut : forall a b, a+b = b+a.
Hypothesis S_mul_commut : forall a b, a*b = b*a.

Close Scope scalar_scope.

We then define the set of terms. Values and bases are properties on terms defined by induction.

Inductive term : Set :=
| T0 : term
| Tadd : term -> term -> term
| Tmul : scalar -> term -> term
| Tvar : nat -> term
| Tlambda : term -> term
| Tapply : term -> term -> term.

Notation "A +s B" := (Sadd A B) (at level 50) : term_scope.
Notation "A *s B" := (Smul A B) (at level 40) : term_scope.

Notation "A + B" := (Tadd A B) : term_scope.
Notation "A ’**’ B" := (Tmul A B) (at level 35) : term_scope.
Notation "@ A" := (Tvar A) (at level 10) : term_scope.
Notation "A ; B" := (Tapply A B) (at level 30) : term_scope.
Notation "\ A" := (Tlambda A) (at level 40) : term_scope.

Open Scope term_scope.

Inductive is_value : term -> Prop :=
| valT0 : is_value T0
| valTlambda : forall s, is_value (Tlambda s)
| valTvar : forall n, is_value (Tvar n)
| valTmulbase : forall a s, is_value s -> is_value (a ** s)
| valTadd : forall s t, is_value s -> is_value t -> is_value (s + t).

96

Appendix A. Proofs from Chapter 2

Inductive is_base : term -> Prop :=
| baseTlambda : forall s, is_base (Tlambda s)
| baseTvar : forall n, is_base (Tvar n).

The definition of local confluence is given in the file RW.v of the library:

Section RW.

(** The relation is on some terms *)
Variable term : Set.

(** It is a binary proposition *)
Variable R : term -> term -> Prop.

(** Transitivity closure of the relation *)
Inductive Rstar : term -> term -> Prop :=
| Rzero : forall r, Rstar r r
| Rcons : forall r t s, (R r s) -> (Rstar s t) -> (Rstar r t).

Definition local_confluent :=
forall r s t, R r s -> R r t -> exists u, Rstar s u /\ Rstar t u.

End RW.

A.9.2 λ→lin

We can now set up the rewrite system of λ→lin . We use the notion of base for the right-linearity of the
application.

Section Term.

Hypothesis R : term -> term -> Prop.

(** Elementary rules *)
Definition R_T0_runit := forall t, R (t + T0) t.
Definition R_S0_anni := forall t, R (S0 ** t) T0.
Definition R_S1_unit := forall t, R (S1 ** t) t.
Definition R_T0_anni := forall a, R (a ** T0) T0.
Definition R_mul_abs := forall a b t, R (a ** (b ** t)) ((a *s b) ** t).
Definition R_ma_dist := forall a s t, R (a ** (s + t)) (a ** s + a ** t).

(** Factorization *)
Definition R_add_fact := forall a b t, R (a ** t + b ** t) ((a +s b) ** t).
Definition R_add_fact1 := forall a t, R (a ** t + t) ((a +s S1) ** t).
Definition R_add_fact11 := forall t, R (t + t) ((S1 +s S1) ** t).

(** Assoc. and commut. of addition *)
Definition R_add_com := forall s t, R (s + t) (t + s).
Definition R_add_rassoc := forall r s t, R ((r + s) + t) (r + (s + t)).
Definition R_add_lassoc := forall r s t, R (r + (s + t)) ((r + s) + t).

(** Congruence *)
Definition R_cong_mul := forall a s t, R s t -> R (a**s) (a**t).
Definition R_cong_ladd := forall u s t, R s t -> R (s+u) (t+u).
Definition R_cong_radd := forall u s t, R s t -> R (u+ s) (u+t).
Definition R_cong_lapp := forall u s t, R s t -> R (s;u) (t;u).
Definition R_cong_rapp := forall u s t, is_value u -> R s t -> R (u;s) (u;t).

97

Appendix A. Proofs from Chapter 2

(** Linearity of application *)
Definition R_add_app_ldist := forall r s t, is_value t -> R ((r + s);t) (r;t + s;t).
Definition R_mul_app_ldist := forall a r s, is_value s -> R ((a**r);s) (a**(r;s)).
Definition R_T0_app_ldist := forall s, is_value s -> R (T0;s) T0.
Definition R_add_app_rdist := forall r s t, is_base t -> R (t;(r + s)) (t;r + t;s).
Definition R_mul_app_rdist := forall a r s, is_base s -> R (s;(a**r)) (a**(s;r)).
Definition R_T0_app_rdist := forall s, is_base s -> R (s;T0) T0.

End Term.

Inductive R : term -> term -> Prop :=
| ax1 :R_T0_runit R
| ax2 :R_S0_anni R
| ax3 :R_S1_unit R
| ax4 :R_T0_anni R
| ax5 :R_mul_abs R
| ax6 :R_ma_dist R

| ax7 :R_add_fact R
| ax8 :R_add_fact1 R
| ax9 :R_add_fact11 R

| ax10 :R_add_com R
| ax11 :R_add_rassoc R
| ax12 :R_add_lassoc R

| ax13 :R_cong_mul R
| ax14 :R_cong_ladd R
| ax15 :R_cong_radd R
| ax16 :R_cong_lapp R
| ax17 :R_cong_rapp R

| ax18 :R_add_app_ldist R
| ax19 :R_mul_app_ldist R
| ax20 :R_T0_app_ldist R
| ax21 :R_add_app_rdist R
| ax22 :R_mul_app_rdist R
| ax23 :R_T0_app_rdist R.

The theorem stating the local confluence of R reads as follows:

Theorem R_local_confluence : forall r s t:term,
(R r s) -> (R r t) -> exists u:term, (Rstar R s u) /\ (Rstar R t u).

A.9.3 λ→alg

The rewrite system of λ→alg is simpler, since it does not consider values.

Section Term.

Hypothesis R : term -> term -> Prop.

(** Elementary rules *)
Definition R_T0_runit := forall t, R (t + T0) t.
Definition R_S0_anni := forall t, R (S0 ** t) T0.
Definition R_S1_unit := forall t, R (S1 ** t) t.

98

Appendix A. Proofs from Chapter 2

Definition R_T0_anni := forall a, R (a ** T0) T0.
Definition R_mul_abs := forall a b t, R (a ** (b ** t)) ((a *s b) ** t).
Definition R_ma_dist := forall a s t, R (a ** (s + t)) (a ** s + a ** t).
(** Factorization *)
Definition R_add_fact := forall a b t, R (a ** t + b ** t) ((a +s b) ** t).
Definition R_add_fact1 := forall a t, R (a ** t + t) ((a +s S1) ** t).
Definition R_add_fact11 := forall t, R (t + t) ((S1 +s S1) ** t).
(** Assoc. and commut. of addition *)
Definition R_add_com := forall s t, R (s + t) (t + s).
Definition R_add_rassoc := forall r s t, R ((r + s) + t) (r + (s + t)).
Definition R_add_lassoc := forall r s t, R (r + (s + t)) ((r + s) + t).
(** Congruence *)
Definition R_cong_mul := forall a s t, R s t -> R (a**s) (a**t).
Definition R_cong_ladd := forall u s t, R s t -> R (s+u) (t+u).
Definition R_cong_radd := forall u s t, R s t -> R (u+ s) (u+t).
Definition R_cong_lapp := forall u s t, R s t -> R (s;u) (t;u).
(** Linearity of application *)
Definition R_add_app_ldist := forall r s t, R ((r + s);t) (r;t + s;t).
Definition R_mul_app_ldist := forall a r s, R ((a**r);s) (a**(r;s)).
Definition R_T0_app_ldist := forall s, R (T0;s) T0.

End Term.

Inductive R : term -> term -> Prop :=
| ax1 :R_T0_runit R
| ax2 :R_S0_anni R
| ax3 :R_S1_unit R
| ax4 :R_T0_anni R
| ax5 :R_mul_abs R
| ax6 :R_ma_dist R

| ax7 :R_add_fact R
| ax8 :R_add_fact1 R
| ax9 :R_add_fact11 R

| ax10 :R_add_com R
| ax11 :R_add_rassoc R
| ax12 :R_add_lassoc R

| ax13 :R_cong_mul R
| ax14 :R_cong_ladd R
| ax15 :R_cong_radd R
| ax16 :R_cong_lapp R

| ax18 :R_add_app_ldist R
| ax19 :R_mul_app_ldist R
| ax20 :R_T0_app_ldist R.

The statement of local confluence for R is the same as in the previous section:

Theorem R_local_confluence : forall r s t:term,
(R r s) -> (R r t) -> exists u:term, (Rstar R s u) /\ (Rstar R t u).

99

Appendix A. Proofs from Chapter 2

100

Appendix B

Proofs from Chapter 3

B.1 Proof of Lemma 3.2.2
Lemma 3.2.2 (α unit). ∀T ∈ T , ∃U ∈ U , α ∈ S such that T ≡ α.U .

Proof. Let µ(·) : T → N be a map defined inductively by

µ(X) = 0 µ(∀X.T) = 1 + µ(T) µ(0) = 0
µ(U → T) = 0 µ(α.T) = 1 + µ(T)

Then we proceed by induction over µ(T).

Basic cases Let µ(T) = 0. Then

1. T = X, then T ∈ U and T ≡ 1.T .

2. T = U → A, then T ∈ U and T ≡ 1.T .

3. T = 0, then ∀U ∈ U , T ≡ 0.U .

Inductive cases Let µ(T) = n and assume the lemma is valid for all A with µ(A) < n. Then, the
possible cases are

1. T = ∀X.A, then µ(A) = n − 1, and so by the induction hypothesis ∃U ∈ U s,t, A ≡ U or
A ≡ α.U , then T ≡ ∀X.U ∈ U or T ≡ ∀X.α.U ≡ α.∀X.U .

2. T = α.A, then µ(A) = n − 1, and so by the induction hypothesis ∃U ∈ U s,t, A ≡ U or
A ≡ β.U , then T ≡ α.U or T ≡ α.β.U ≡ (α× β).U .

�

B.2 Proof of Lemma 3.2.6
Lemma 3.2.6 (Arrows comparison). For any types U, V ∈ U and T,R ∈ T , if V → R � U → T , then
∃ ~W, ~X / U → T ≡ (V → R)[~W/ ~X].

Proof. A map (·)◦ : T → T is defined by

X◦ = X (U → T)◦ = U → T (∀X.T)◦ = T ◦ (α.T)◦ = α.T ◦ (0)◦ = 0

We need two intermediate results.

1. For any types T ∈ T , U ∈ U , exists V ∈ U such that (T [U/X])◦ ≡ T ◦[V/X].

2. For any types T , R, if T � R then ∃~U, ~X / R◦ ≡ T ◦[~U/ ~X].

Proofs

1. Structural induction on T

101

Appendix B. Proofs from Chapter 3

T = X then (X[U/X])◦ = U◦ = X[U◦/X] = X◦[U◦/X].
T = Y then (Y [U/X])◦ = Y = Y ◦[U/X].
T = V → R then ((V → R)[U/X])◦ = (V [U/X] → R[U/X])◦ = V [U/X] → R[U/X] = (V →

R)[U/X] = (V → R)◦[U/X].
T = ∀Y.R then ((∀Y.R)[U/X])◦ = (∀Y.R[U/X])◦ = (R[U/X])◦, which, by the induction hypothe-

sis, is equivalent to R◦[V/X] = (∀Y.R)◦[V/X].
T = 0 analogous to T ≡ Y .
T = α.R then (α.R[U/X])◦ = α.(R[U/X])◦, which, by the induction hypothesis, is equivalent to

α.(R◦)[V/X] = (α.R)◦[V/X].

2. It suffices to show this for T ≺ R.

Case 1 R ≡ ∀X.T . Then R◦ ≡ T ◦.
Case 2 T ≡ ∀X.S and R ≡ S[U/X] then by the intermediate result 1 one has R◦ ≡ S◦[U/X] ≡

T ◦[U/X].

Proof of the lemma. U → T ≡ (U → T)◦, by the intermediate result 2, this is equivalent to (V →
R)◦[~U/ ~X] ≡ (V → R)[~U/ ~X]. �

B.3 Proof of Lemma 3.2.8
Lemma 3.2.8 (Generation lemma (app)). For any terms t, r, any type T , any scalar γ, any context Γ
and any number n ∈ N, if Sn =Γ ` (t) r : γ.T , then ∃α, β ∈ S, r, s ∈ N with max(r, s) < n, U ∈ U and
R � T such that Sr =Γ ` r :α.U and Ss =Γ ` t :β.U → R with α× β = γ.

Proof. Induction on n.

1.
Γ ` t :β.(U → T) Γ ` r :α.U

→E
Γ ` (t) r : (α× β).T

This is the trivial case.

2.
Γ ` (t) r :∀X.γ.T

∀E
Γ ` (t) r : γ.T [U/X]

Since ∀X.γ.T ≡ γ.∀X.T , by the induction hypothesis ∃α, β, r, s, U
and T ′ ≥ ∀X.T such that Sr = Γ ` t : β.U → T ′, Ss = Γ ` r :α.U ,
α × β = γ and max(r, s) < n − 1. Since T ′ � ∀X.T ≺ T [U/X] then
by transitivity T ′ � T [U/X].

3.

Γ ` (t) r : γ.T
∀I

Γ ` (t) r :∀X.γ.T
≡

Γ ` (t) r : γ.∀X.T

By the induction hypothesis ∃α, β, r, s, U and T ′ ≥ T such that Sr =
Γ ` t :β.U → T ′, Ss = Γ ` r :α.U , α× β = γ and max(r, s) < n− 1. By
definition T ≺ ∀X.T , so by transitivity T ′ � ∀X.T .

�

B.4 Proof of Lemma 3.2.9
Lemma 3.2.9 (Generation lemma (abs)). For any term t, any type T , any context Γ and any number
n ∈ N, if Sn =Γ ` λx.t :T then ∃U ∈ U , R ∈ T andm < n such that Sm =Γ, x :U ` t :R and U → R � T .

Proof. Induction on n.

1.
Γ, x :U ` t :T

→I
Γ ` λx.t :U → T

This is the trivial case.

2.
Γ ` λx.t :∀X.T

∀E
Γ ` λx.t :T [V/X]

By the induction hypothesis ∃U,R such that Γ, x :U ` t :R and U → R �
∀X.T ≺ T [V/X].

3.
Γ ` λx.t :T

∀I
Γ ` λx.t :∀X.T

By the induction hypothesis ∃U,R such that Γ, x :U ` t :R and U → R �
T ≺ ∀X.T .

�

102

Appendix B. Proofs from Chapter 3

B.5 Proof of Lemma 3.2.10
Lemma 3.2.10 (Generation lemma (sc)). For any scalar α 6= 0, any context Γ, any term t, any type T
and any number n ∈ N, if Sn =Γ ` α.t :α.T , then ∃m < n such that Sm =Γ ` t :T .

Proof. Induction on n.

1.
Γ ` α.t :∀X.α.T

∀E
Γ ` α.t :α.T [U/X]

Since ∀X.α.T ≡ α.∀X.T , by the induction hypothesis ∃m < n − 1 such
that Sm = Γ ` t :∀X.T , then by using ∀E rule, Γ ` t :T [U/X] and notice
that m < n− 1⇒ m+ 1 < n.

2.

Γ ` α.t :α.T
∀I

Γ ` α.t :∀X.α.T
≡

Γ ` α.t :α.∀X.T

By the induction hypothesis ∃m < n− 1 such that Sm = Γ ` t :T , then by
using ∀I rule, Γ ` t :∀X.T and notice that m < n− 1⇒ m+ 1 < n.

3.
Γ ` t :T

sI
Γ ` α.t :α.T

This is the trivial case.

�

B.6 Proof of Lemma 3.2.11
Lemma 3.2.11 (Generation lemma (sc-0)). For any context Γ, any term t, any type T and any number
n ∈ N, if Sn =Γ ` 0.t :T , then ∃R and m < n such that Sm =Γ ` t :R.

Proof. Induction on n.

1.
Γ ` 0.t :∀X.0.T

∀E
Γ ` 0.t : 0.T [U/X]

Since ∀X.0.T ≡ 0.∀X.T , by the induction hypothesis ∃R and m < n−1
such that Sm = Γ ` t :R.

2.

Γ ` 0.t :α.T
∀I

Γ ` 0.t :∀X.0.T
≡

Γ ` 0.t : 0.∀X.T

By the induction hypothesis ∃R and m < n− 1 such that Sm = Γ ` t :R.

3.
Γ ` t :T

sI
Γ ` 0.t : 0.T

This is the trivial case.

�

B.7 Proof of Lemma 3.2.12
Lemma 3.2.12 (Generation lemma (sum)). For any terms t, r, any scalar α, any type U ∈ U , any
context T and any number n ∈ N, if Sn =Γ ` t + r :α.U , then ∃δ, γ ∈ S and r, s ∈ N with max(r, s) < n
such that Sr =Γ ` t : δ.U and Ss =Γ ` r : γ.U with δ + γ = α.

Proof. Induction on n.

1.
Γ ` t : δ.T Γ ` r : (α− δ).T

+I
Γ ` t + r :α.T

Then take γ = α − δ, Sr = Γ ` t : δ.T , Ss = Γ ` r : (α − δ).T
and notice that max(r, s) < n and δ + α− δ = α.

2.
Γ ` t + r :∀X.α.T

∀E
Γ ` t + r :α.T [U/X]

Since ∀X.α.T ≡ α.∀X.T , by the induction hypothesis ∃δ, γ, r and s
such that Ss = Γ ` t : δ.∀X.T , Sr = Γ ` r : γ.∀X.T , δ + γ = α and
max(r, s) < n − 1. Then by using ∀E rule, Γ ` t : δ.T [U/X] and Γ `
r : γ.T [U/X]. So, Sr+1 = Γ ` t : δ.T [U/X], Ss+1 = Γ ` r : γ.T [U/X] and
max(r + 1, s+ 1) = max(r, s) + 1 < n.

3.

Γ ` t + r :α.T
∀I

Γ ` t + r :∀X.α.T
≡

Γ ` t + r :α.∀X.T

By the induction hypothesis ∃δ, γ, r and s such that Sr = Γ ` t : δ.T ,
Ss = Γ ` r : γ.T , δ + γ = α and max(r, s) < n− 1. Then, by using ∀I rule,
Γ ` t : ∀X.δ.T ≡ δ.∀X.T and Γ ` r : ∀X.γ.T ≡ γ.∀X.T . So, Sr+1 = Γ `
t : δ.∀X.T , Ss+1 = Γ ` r : γ.∀X.T and max(r+1, s+1) = max(r, s)+1 < n.

�

103

Appendix B. Proofs from Chapter 3

B.8 Proof of Lemma 3.2.13
Lemma 3.2.13 (Substitution). For any term t, any base terms b, any types T ∈ T , ~U ∈ Un and any
context Γ,

1. Γ ` t :T ⇒ Γ[~U/ ~X] ` t :T [~U/ ~X].

2. { Γ, x :U ` t :T and Γ ` b :U } ⇒ Γ ` t[b/x] :T .

Proof of item 1. Let Sn = Γ ` t :T . Induction on n.

1. ax
Γ, x :V ` x :V

Notice that (Γ, x : V)[~U/ ~X] = Γ[~U/ ~X], x : V [~U/ ~X], then by ax rule,
(Γ, x :V)[~U/ ~X] ` x :V [~U/ ~X].

2. ax0
Γ ` 0 : 0

Notice that 0 = 0[~U/ ~X], then by ax0, Γ[~U/ ~X] ` 0 : 0[~U/ ~X].

3.
Γ ` t :α.(V → T) Γ ` r :β.V

→E
Γ ` (t) r : (α× β).T

By the induction hypothesis Γ[~U/ ~X] ` t : (α.(V →
T))[~U/ ~X] = α.V [~U/ ~X] → T [~U/ ~X] also by the induction
hypothesis, Γ[~U/ ~X] ` r : (β.V)[~U/ ~X] = β.V [~U/ ~X]. Then
by rule→E , Γ[U/X] ` (t) r : (α×β).T [~U/ ~X] and this type
is equal to ((α× β).T)[~U/ ~X].

4.
Γ, x :V ` t :T

→I
Γ ` λx.t :V → T

By the induction hypothesis (Γ, x :V)[~U/ ~X] ` t :T [~U/ ~X]. Notice that
(Γ, x : V)[~U/ ~X] = Γ[~U/ ~X], x : V [~U/ ~X], then using rule →I , one has
Γ[~U/ ~X] ` λx.t :V [~U/ ~X]→ T [~U/ ~X] = (V → T)[~U/ ~X].

5.
Γ ` t :∀Y.T

∀E
Γ ` t :T [V/Y]

By the induction hypothesis Γ[~U/ ~X] ` t : (∀Y.T)[~U/ ~X] where Y /∈ ~X and
Y 6∈ FV (~U). Then (∀Y.T)[~U/ ~X] = ∀Y.T [~U/ ~X], and so by using ∀E rule,
Γ[~U/ ~X] ` t : (T [~U/ ~X])[W/Y]. As Y 6∈ FV (~U), then (T [~U/ ~X])[W/Y] =

T [~U/ ~X,W/Y]. Take W = V [~U/ ~X], then T [~U/ ~X,W/Y] = (T [V/Y])[~U/ ~X].

6.
Γ ` t :T

∀I
Γ ` t :∀Y.T

Let Z be a fresh variable. By the induction hypothesis Γ[Z/Y] ` t :T [Z/Y], but
since Y 6∈ FV (Γ), we can just write Γ ` t :T [Z/Y]. By the induction hypothesis
again Γ[~U/ ~X] ` t : (T [Z/Y])[~U/ ~X]. Since Z is fresh, it does not appears in
Γ[~U/ ~X]. Then by using ∀I rule, Γ[~U/ ~X] ` t :∀Z.((T [Z/Y])[~U/ ~X]). Notice that
∀Z.((T [Z/Y])[~U/ ~X]) = (∀Z.T [Z/Y])[~U/ ~X] = (∀Y.T)[~U/ ~X].

7.
Γ ` t :T

sI
Γ ` α.t :α.T

By the induction hypothesis Γ[~U/ ~X] : t : T [~U/ ~X], then by rule sI , one has
Γ[~U/ ~X] :α.t :α.T [~U/ ~X] = (α.T)[~U/ ~X].

8.
Γ ` t :α.T Γ ` r :β.T

+I
Γ ` t + r : (α+ β).T

By the induction hypothesis Γ[~U/ ~X] ` t : (α.T)[~U/ ~X] = α.T [~U/ ~X]

and also Γ[~U/ ~X] ` r : (β.T)[~U/ ~X] = β.T [~U/ ~X]. So, by rule +I ,
Γ[~U/ ~X] ` t+r : (α+β).T [~U/ ~X] and notice that (α+β).T [~U/ ~X] =

((α+ β).T)[~U/ ~X].
�

Proof of item 2. Let Sn = Γ, x :U ` t :T . Induction on n.

1. ax
Γ, x :U ` x :U

Notice that x[b/x] = b, so Γ ` b :U .

2. ax
Γ, y :V, x :U ` y :V

Notice that y[b/x] = y, so Γ, y :V ` y[b/x] :V by rule ax.

3. ax0
Γ, x :U ` 0 : 0

Notice that 0[b/x] = 0, so Γ ` 0[b/x] : 0 by rule ax0.

4.
Γ, x :U ` t :α.V → T Γ, x :U ` r :β.V

→E
Γ, x :U ` (t) r : (α× β).T

By the induction hypothesis Γ ` t[b/x] : α.V →
T and also Γ ` r[b/x] : β.V , so by rule →E ,
Γ ` (t[b/x]) r[b/x] : (α × β).T . Notice that
(t[b/x]) r[b/x] is equal to ((t) r)[b/x].

104

Appendix B. Proofs from Chapter 3

5.
Γ, y :V, x :U ` t :T

→I
Γ, x :U ` λy.t :V → T

By the induction hypothesis Γ, y : V ` t[b/x] : T , then by rule →I ,
Γ ` λy.(t[b/x]) :V → T . Notice that λy.(t[b/x]) = (λy.t)[b/x].

6.
Γ, x :U ` t :∀X.T

∀E
Γ, x :U ` t :T [V/X]

By the induction hypothesis one has Γ ` t[b/x] : ∀X.T , then by rule
∀E , Γ ` t[b/x] :T [V/X].

7.
Γ, x :U ` t :T

∀I
Γ, x :U ` t :∀X.T

By the induction hypothesis one has Γ ` t[b/x] : T , then by rule ∀I ,
Γ ` t[b/x] : ∀X.T .

8.
Γ, x :U ` t :T

sI
Γ, x :U ` α.t :α.T

By the induction hypothesis Γ ` t[b/x] : T , then by rule sI , Γ `
α.(t[b/x]) :α.T . Notice that α.(t[b/x]) = (α.t)[b/x].

9.
Γ, x :U ` t :α.T Γ, x :U ` r :β.T

+I
Γ, x :U ` t + r : (α+ β).T

By the induction hypothesis one has Γ ` t[b/x] : α.T
and Γ ` r[b/x] : β.T , so by rule +I , it can be deduced
Γ ` t[b/x] + r[b/x] : (α + β).T . Notice that t[b/x] +
r[b/x] = (t + r)[b/x].

�

B.9 Proof of Lemma 3.2.15

Lemma 3.2.15 (Scaling unit). For any term t, scalar α, type T and context Γ, if Γ ` α.t :T then there
exists U ∈ U and γ ∈ S such that T ≡ α.γ.U .

Proof. Let Sn = Γ ` α.t :T . Induction on n.

1.
Γ ` t :T

sI
Γ ` α.t :α.T

By Lemma 3.2.2, ∃U ∈ U , γ ∈ S such that T ≡ γ.U . Then α.T ≡ α.γ.U .

2.
Γ ` α.t :∀X.T

∀E
Γ ` α.t :T [V/X]

By Lemma 3.2.2, ∃U ∈ U , δ ∈ S such that T ≡ δ.U , then T [V/X] ≡
δ.U [V/X] and also ∀X.T ≡ ∀X.δ.U ≡ δ.∀X.U . In addition, by the in-
duction hypothesis ∃U ′ ∈ U , γ ∈ S such that ∀X.T ≡ α.γ.U ′. Sum-
marising: α.γ.U ′ ≡ δ.∀X.U . Then, by Lemma 3.2.3, δ = α × γ, so
T [V/X] ≡ α.γ.U [V/X].

3.
Γ ` α.t :T

∀I
Γ ` α.t :∀X.T

By the induction hypothesis ∃U ∈ U , γ ∈ S such that T ≡ α.γ.U , then
∀X.T ≡ ∀X.α.γ.U ≡ α.γ.∀X.U .

�

B.10 Proof of Lemma 3.2.16

Lemma 3.2.16 (Base terms in unit). For any base term b, context Γ and type T , Γ ` b : T ⇒ ∃U ∈
U such that T ≡ U .

Proof. Let Sn = Γ ` b :T . Induction on n

1. ax
Γ, x :U ` x :U

Trivial case.

2.
Γ, x :U ` t :T

→I
Γ ` λx.t :U → T

Trivial case.

3.
Γ ` b :∀X.T

∀E
Γ ` b :T [U/X]

By the induction hypothesis ∀X.T ∈ U , so T ∈ U and then T [U/X] ∈ U .

4.
Γ ` t :T

∀I
Γ ` t :∀X.T

By the induction hypothesis T ∈ U , so ∀X.T ∈ U .

�

105

Appendix B. Proofs from Chapter 3

B.11 Proof of Lemma 3.2.17
Lemma 3.2.17 (Type for 0). For any context Γ and type T , Γ ` 0 :T ⇒ T ≡ 0.

Proof. Let Sn = Γ ` 0 :T . Induction on n.

1. ax0
Γ ` 0 : 0

Trivial case

2.
Γ ` 0 :∀X.T

∀E
Γ ` 0 :T [U/X]

By the induction hypothesis ∀X.T ≡ 0, so T ≡ 0 and also T [U/X] ≡ 0.

3.
Γ ` 0 :T

∀I
Γ ` 0 :∀X.T

By the induction hypothesis T ≡ 0, so ∀X.T ≡ 0.

�

B.12 Proof of Theorem 3.2.1
Theorem 3.2.1 (Subject Reduction). For any terms t, t′, any context Γ and any type T , if t→ t′, then
Γ ` t :T ⇒ Γ ` t′ :T .

Proof. We proceed by checking that every reduction rule preserves the type. Let t→ r and Γ ` t :T . To
show that Γ ` r :T , we proceed by induction on the derivation of the typing judgement.

Elementary rules

rule t + 0→ t Let Γ ` t + 0 :T . By Lemma 3.2.12,∃α, β ∈ S such thatΓ ` t :α.T and Γ ` 0 : β.T
with α+ β = 1. Then, by Lemma 3.2.17, β.T ≡ 0, so either β = 0, and then α = 1 or T ≡ 0,
and then α.T ≡ 0 ≡ T .

rule 0.t→ 0 Let Γ ` 0.t : T . By Lemma 3.2.15, ∃R such that T ≡ 0.R ≡ 0, and by rule ax0,
Γ ` 0 : 0.

rule 1.t→ t Let Γ ` 1.t :T ≡ 1.T . By Lemma 3.2.10, Γ ` t :T .

rule α.0→ 0 Let Γ ` α.0 :T . By Lemma 3.2.15, ∃R such that T ≡ α.R. Cases
α 6= 0 By Lemma 3.2.10, Γ ` 0 :R. Thus, by Lemma 3.2.17, R ≡ 0 and so T ≡ α.R ≡ 0.
α = 0 By Lemma 3.2.11, ∃S such that Γ ` 0 :S and by Lemma 3.2.17, S ≡ 0.

rule α.(β.t)→ (α× β).t True by Lemma 3.2.21.

rule α.(t + r)→ α.t + α.r True by Lemma 3.2.22.

Factorisation rules

rule α.t + β.t→ (α+ β).t True by Lemma 3.2.23.

rule α.t + t→ (α+ 1).t Let Γ ` α.t + t : T . Using rule sI one can derive Γ ` 1.(α.t + t) : 1.T .
Then by Lemma 3.2.22, Γ ` 1.α.t + 1.t : 1.T . Moreover, by Lemma 3.2.12, Γ ` 1.α.t : γ.T and
Γ ` 1.t : δ.T with γ + δ = 1. So, by Lemma 3.2.21, Γ ` α.t : γ.T . Then using rule +I one can
derive Γ ` α.t + 1.t : 1.T . We conclude, by Lemma 3.2.23, with Γ ` (α+ 1).t : 1.T ≡ T .

rule t + t→ (1 + 1).t Let Γ ` t + t : T . Then by rule sI , Γ ` 1.(t + t) : 1.T . By Lemma 3.2.22,
Γ ` 1.t + 1.t : 1.T and by Lemma 3.2.23, Γ ` (1 + 1).t : 1.T ≡ T .

Application rules

rule (t + r) u→ (t) u + (r) u Let Γ ` (t + r) u : T ≡ 1.T . Then, by Lemma 3.2.8, ∃α, β, U and
T ′ � T such that Γ ` u : α.U and Γ ` t + r : β.U → T ′ ≡ 1.β.U → T ′ with α × β = 1.
Then by Lemma 3.2.12, ∃δ and γ such that Γ ` t : δ.β.U → T ′ ≡ (δ × β).U → T ′ and
Γ ` r : γ.β.U → T ′ ≡ (γ×β).U → T ′ with δ+γ = 1. Then by rule→E , Γ ` (t) u : (δ×β×α).T ′

and Γ ` (r) u : (γ×β×α).T ′. Notice that (δ×β×α).T ′ = (δ×1).T ′ = δ.T ′ and (γ×β×α).T ′ =
(γ × 1).T ′ = γ.T ′. Then by Lemmas 3.2.5 and 3.2.7 Γ ` (t) u : δ.T and Γ ` (r) u : γ.T , from
which, using rule +I , one can derive Γ ` (t) u + (r) u : (δ + γ).T ≡ T .

106

Appendix B. Proofs from Chapter 3

rule (u) (t + r)→ (u) t + (u) r Analogous to the previous case.

rule (α.t) r→ α.(t) r Let Γ ` (α.t) r : T ≡ 1.T . Then by Lemma 3.2.8, ∃γ, β, U and T ′ � T
such that Γ ` r : γ.U and Γ ` α.t : β.U → T ′ with γ × β = 1. Moreover, by Lemma 3.2.15,
β.U → T ′ ≡ α.δ.U ′ then by Lemma 3.2.3, U → T ′ ≡ U ′ and β = α × δ (notice that β 6= 0
because γ×β = 1). So by Lemma 3.2.10, Γ ` t : δ.(U → T ′). By using rule→E one can derive
Γ ` (t) r : δ.γ.T ′ from which, using rule sI one can deduce Γ ` α.(t) r :α.δ.γ.T ′. Notice that
α.δ.γ.T ′ ≡ (α× δ × γ).T ′ = (β × γ).T ′ = 1.T ≡ T ′, so by Lemma 3.2.7, Γ ` α.(t) r : 1.T .

rule (r) (α.t)→ α.(r) t Analogous to the previous case.

rule (0) t→ 0 True by Lemma 3.2.20, and rule ax0.

rule (t) 0→ 0 True by Lemma 3.2.20, and rule ax0.

Beta reduction

rule (λx.t) b→ t[b/x] Let Γ ` (λx.t) b : T . By rule ≡, Γ ` (λx.t) b : 1.T , so by Lemma 3.2.8,
∃α, β, U, T ′ � T such that Γ ` λx.t :β.U → T ′ and Γ ` b :α.U with α×β = 1. Since b is a base
term, by Lemma 3.2.16, α = 1 and so β = 1. Then by Corollary 3.2.14, Γ, x :U ` t :T ′. Thus,
by Lemma 3.2.13, Γ ` t[b/x] :T ′, from which, by Lemma 3.2.7, one obtain Γ ` t[b/x] :T .

AC equivalences

Commutativity Let Γ ` t + r : T . Then, by Lemma 3.2.12, ∃δ and γ such that Γ ` t : δ.T and
Γ ` r : γ.T with δ + γ = 1. Then using rules +I and ≡, one can derive Γ ` r + t :T .

Associativity Let Γ ` (t + r) + u :T . Then, by Lemma 3.2.12, ∃δ and γ such that Γ ` t + r : δ.T
and Γ ` u : γ.T with δ+ γ = 1. Then, by Lemma 3.2.12 again, ∃δ′ and γ′ such that Γ ` t : δ′.T
and Γ ` r : γ′.T with δ′ + γ′ = δ. Then with rule +I one can deduce Γ ` r + u : (γ′ + γ).T
and with the same rule, Γ ` t + (r + u) : (δ′ + γ′ + γ).T ≡ T . The inverse is analogous: if
Γ ` t + (r + u) :T then Γ ` (t + r) + u :T .

Contextual rules Let t→ r and assume as induction hypothesis that for any context Γ and type T , if
Γ ` t :T then Γ ` r :T .

(t) u→ (r) u Let Γ ` (t) u : T . By Lemma 3.2.7, Γ ` (t) u : 1.T . Then by Lemma 3.2.8, Γ `
t : α.U → R and Γ ` u : β.U with R � T and α × β = 1. By the induction hypothesis
Γ ` r :α.U → R, from which, using rule →E , one can deduce Γ ` (r) u :α× β.R. Notice that
α× β.R = 1.R ≡ R � T , so by Lemma 3.2.7, Γ ` (r) u :T .

(u) t→ (u) r Analogous to previous case.

t + u→ r + u Let Γ ` t + u : T . By Lemma 3.2.2, T ≡ α.U , so by rule ≡, Γ ` t + u : α.U .
Then by Lemma 3.2.12, Γ ` t : δ.U and Γ ` u : γ.U with δ + γ = α. By the induction
hypothesis Γ ` r : δ.U , so using rule +I one can deduce Γ ` r + u : (δ + γ).U . Notice that
(δ + γ).U = α.U ≡ T .

u + t→ u + r Analogous to previous case.

α.t→ α.r Let Γ ` α.t :T . By Lemma 3.2.15, ∃γ and U such that T ≡ α.γ.U . Cases

α 6= 0 By Lemma 3.2.10, Γ ` t : γ.U . Moreover, by the induction hypothesis Γ ` r : γ.U , and
using the rule sI one can derive Γ ` α.r :α.γ.U ≡ T .

α = 0 By Lemma 3.2.11, ∃R such that Γ ` t :R. Moreover, by the induction hypothesis
Γ ` r :R, and using the rule sI one can derive Γ ` α.r :α.R ≡ 0 ≡ T .

λx.t→ λx.r Let Γ ` λx.t :T . By Lemma 3.2.9, ∃U andR such that Γ, x :U ` t :R with U → R � T .
Then by the induction hypothesis Γ, x : U ` r :R, and using the rule →I one can derive
Γ ` λx.r :U → R. By Lemma 3.2.7, Γ ` λx.r :T .

�

107

Appendix B. Proofs from Chapter 3

B.13 Proof of Lemma 3.3.5
Lemma 3.3.5.

1. SN ∈ SAT ,

2. A,B ∈ SAT ⇒ A→ B ∈ SAT ,

3. Let {Ai}i∈I be a collection of members of SAT ,
⋂
i∈I Ai ∈ SAT ,

4. Given a valuation ξ in SAT and a A in T(λ2la), then [[A]]ξ ∈ SAT .

Proof.

1. Obviously SN ⊆ SN . We need to prove it satisfies each point of the definition of saturation.

(a) 0 ∈ SN .

(b) ∀x,~t, (x) ~t ∈ SN .

(c) Assume (t[b/x]) ~r ∈ SN , then the term

((λx.t) b) ~r (B.1)

must terminate because t,b and ~r terminate since they are SN by assumption (t[b/x] is a
sub-term of a term in SN , hence itself is SN ; but then t is also SN), After finitely many steps
reducing terms in B.1 we obtain ((λx.t′) b′) ~r′ with t →∗ t′, b → b′ and ∀i, ri → r′i. Then
the contraction of ((λx.t′) b′) ~r′ gives

(t′[b′/x]) ~r′ (B.2)

This is a reduct of (t[b/x]) ~r and since this is SN , also B.2 and ((λx.t) b) ~r are SN .

(d) First notice that if t,u ∈ SN , then t + u ∈ SN . Now, assume ∀i ∈ I, (ti) ~r ∈ SN , which
implies that ti and ~r are SN . Also, notice that (

∑
i∈I ti) ~r →∗

∑
i∈I(ti) ~r which is the sum

of SN terms, so is SN . We need to prove that any other reduction starting from (
∑
i∈I ti) ~r

is also SN . We proceed by induction on I. To simplify the notation, we take I = {1, . . . , n}
with n ≥ 1.

• If I = {1}, then we are done, since ∀i ∈ I, (ti) ~r ∈ SN .
• Assume it is true for I = {1, . . . , n}, that is (

∑n
i=1 ti) ~r ∈ SN .

• Let I = {1, . . . , n+ 1}, then we must prove that (
∑n
i=1 ti + tn+1) ~r ∈ SN . Case by case

on its possible reductions. Notice that any reduction in ~t or ~r is finite since these terms
are in SN , so the amount of addends is the same.
Elementary rules

– One tk = 0 and rule t + 0 → t applies. Then the induction hypothesis closes the
case.

– One tk = α.(tk1 + tk2) and reduces to α.tk1 +α.tk2 , it still can be considered as one
addend since tk is in SN .

– In other case, it is just a reduction in one ti or one of ~r.
Factorisation rules Induction hypothesis.
Application rules

– Again, reductions on any tk are no considered since these cases are trivial by the
strong normalisation of tk.

– (
∑n
i=1 ti + tn+1) ~r → (

∑n
i=1 ti) ~r + (tn+1) ~r, then since by induction hypothesis

(
∑n
i=1 ti) ~r ∈ SN and by hypothesis also (tn+1) ~r ∈ SN , its sum is in SN .

– (
∑n
i=1 ti + tn+1) ~r→ (

∑k
i=1 ti) ~r + (

∑n+1
i=k+1 ti) ~r the induction hypothesis applies

to both addends.
– Any other case does not involves a sum, so they are either included in the case of

reduction of one tk or one from ~r, or in the basic case of the induction.

108

Appendix B. Proofs from Chapter 3

Beta reduction This is either the basic case or a reduction in one tk or one of ~r.

(e) ∀i ∈ I, ((u) ti) ~r ∈ SN . Notice that ((u)
∑
i∈I ti) ~r →∗

∑
i∈I((u) ti) ~r which is the sum of

SN terms. This case is analogous to 1d.

(f) t ∈ SN , then ∀α ∈ S, α.t ∈ SN and vice versa.

(g) α.(((t1) t2) . . .) tn) ∈ SN then ∀k, ((((t1) . . .) α.tk) . . .) tn must terminate because ~t ter-
minate since these terms are SN by assumption, so after infinitely many reduction steps
reducing ((((t1) . . .) α.tk) . . .) tn we obtain α.u, with ((t1) . . .) tn →∗ u. So α.u is a reduct
of α.(((t1) . . .) tn) and since this term is SN , ∀k, ((((t1) . . .) α.tk) . . .) tn are SN .

(h) (0) ~t→∗ (0) ~t′ and since ~t is SN , assume ~t′ is in normal form, so (0) ~t′ can only reduce to 0,
then (0) ~t ∈ SN .

(i) ((t) 0) ~u →∗ ((t′) 0) ~u′, since t and ~u are in SN , assume t′, ~u′ are in normal form, then
((t′) 0) ~u′ can only reduce to (0) ~u′ which can only reduce to 0, so it is in SN .

2. Let A,B ∈ SAT , then x ∈ A by definition of saturated sets. ∀t ∈ A → B, (t) x ∈ B. Since
B ∈ SAT , then B ⊆ SN , so (t) x ∈ SN and so t is strongly normalising. Therefore A→ B ⊆ SN .
Now we need to show A→ B is saturated by showing each point at the definition of saturated sets.

(a) By saturation of B, ∀u ∈ A, (0) u ∈ B, then 0 ∈ A→ B.

(b) Let ~t ∈ SN , we need to show that (x) ~t ∈ A → B, i.e. ∀u ∈ A, ((x) ~t) u ∈ B, which is true
since A ∈ SAT implies that u ∈ SN , so B ∈ SAT implies that ((x) ~t) u ∈ B.

(c) Let (t[b/x]) ~r ∈ A → B, then ∀u ∈ A, ((t[b/x]) ~r) u ∈ B and since B is saturated,
(((λx.t) b) ~r) u ∈ B, so ((λx.t) b) ~r ∈ A→ B.

(d) Let ∀i ∈ I, (ti) ~r ∈ A→ B, then ∀u ∈ A and ∀i ∈ I, ((ti) ~r) u ∈ B, then by the saturation of
B, ((

∑
i∈I ti) ~r) u ∈ B, so (

∑
i∈I ti) ~r ∈ A→ B.

(e) Let ∀i ∈ I, ((u) ti) ~r ∈ A → B, then ∀t′ ∈ A, (((u) ti) ~r) t′ ∈ B, then by saturation of B,
(((u)

∑
i∈I ti) ~r) t′ ∈ B, so ((u)

∑
i∈I ti) ~r ∈ A→ B.

(f) Let t ∈ A → B then ∀u ∈ A, (t) u ∈ B, then by the saturation of B, ∀α ∈ S, α.(t) u ∈ B,
then also by the saturation of B, (α.t) u ∈ B, so α.t ∈ A→ B.
Let α.t ∈ A → B, then ∀u ∈ A, (α.t) u ∈ B, so by the saturation of B, α.(t) u ∈ B, and
again, by the saturation of B, (t) u ∈ B, so t ∈ A→ B.

(g) Let α.(((t1) . . .) tn) ∈ A → B, then ∀u ∈ A, (α.(((t1) . . .) tn)) u ∈ B, then by the satu-
ration of B, α.((((t1) . . .) tn) u) ∈ B, and so, again by the saturation of B, one also has
∀k, (((((t1) . . .) α.tk) . . .) tn) u ∈ B, then ∀k, ((((t1) . . .) α.tk) . . .) tn ∈ A→ B.
The inverse follows analogously: let ((((t1) . . .) α.tk) . . .) tn ∈ A → B, then ∀u ∈ A,
(((((t1) . . .) α.tk) . . .) tn) u ∈ B, so by the saturation of B, α.((((t1) . . .) tn) u) ∈ B and
then, also by the saturation ofB, one has (α.((t1) . . .) tn) u ∈ B, then α.((t1) . . .) tn ∈ A→ B.

(h) ∀u ∈ A, u ∈ SN and then, by the saturation of B, ∀~t ∈ SN , ((0) ~t) u ∈ B. Then (0) ~t ∈
A→ B.

(i) ∀r ∈ A, r ∈ SN and then, by the saturation of B, ∀t, ~u ∈ SN , (((t) 0) ~u) r ∈ B. Then
((t) 0) ~u ∈ A→ B.

3. Let {Ai}i∈I be a collection of members of SAT , then ∀i ∈ I, Ai ⊆ SN , so
⋂
i∈I Ai ⊆ SN . We have

to show that
⋂
i∈I Ai is saturated.

• Conditions (a), (b), (h) and (i) follows trivially: all these conditions have the form “t ∈ X”.
Since by the saturation of Ai, ∀i ∈ I, t ∈ Ai, then t ∈

⋂
i∈I Ai.

• Conditions (c), (d), (e), (f) and (g) are also straightforward: all these conditions have the form
“If t in X, then r in X”. Let t ∈

⋂
i∈I Ai, then ∀i ∈ I, t ∈ Ai and so, by the saturation of Ai,

r ∈ Ai, from where one can deduce r ∈
⋂
i∈I Ai.

4. By structural induction on A.

A := X: Then [[A]]ξ = ξ(X) ∈ SAT .

109

Appendix B. Proofs from Chapter 3

A := B → C: Then [[A]]ξ = [[B]]ξ → [[C]]ξ. by the induction hypothesis [[B]]ξ and [[C]]ξ ∈ SAT , then
by Lemma 3.3.5(2), [[B]]ξ → [[C]]ξ ∈ SAT .

A := ∀X.A′: Then [[A]]ξ =
⋂
Y ∈SAT [[A′]]ξ(X:=Y). By the induction hypothesis one has that ∀Y in

SAT , [[A′]]ξ(X:=Y) is also in SAT , then by Lemma 3.3.5(3),
⋂
Y ∈SAT [[A′]]ξ(X:=Y) ∈ SAT .

�

B.14 Proof of Theorem 3.3.7
Theorem 3.3.7 (Soundness). Γ t :A⇒ Γ � t :A.

Proof. We proceed by induction on the derivation of Γ t :T .

1. ax/
Γ, x :A x :A

Notice that if ρ, ξ � Γ, x :A, then by definition ρ, ξ � x :A.

2. ax/0
Γ 0 :A

Then ∀ξ, ρ, by the saturation of [[A]]ξ, 0 ∈ [[A]]ξ. Since [[0]]ρ = 0, then ρ, ξ � 0 :A,
and so ∀Γ, Γ � 0 :A.

3.
Γ t :A→ B Γ r :A

→/
E

Γ (t) r :B

By the induction hypothesis, Γ � t :A → B and Γ � r :A.
Assume ρ, ξ � Γ in order to show ρ, ξ � (t) r :B. Then
ρ, ξ � t :A → B, i.e. [[t]]ρ ∈ [[A → B]]ξ = [[A]]ξ → [[B]]ξ and
[[r]]ρ ∈ [[A]]ξ. Then [[(t) r]]ρ = [[t]]ρ [[r]]ρ ∈ [[B]]ξ, so ρ, ξ �
(t) r :B.

4.
Γ, x :A t :B

→/
I

Γ λx.t :A→ B

Assume ρ, ξ � Γ in order to show ρ, ξ � λx.t :A → B. That is, we must
show ([[λx.t]]ρ) u ∈ [[B]]ξ for all u ∈ [[A]]ξ. Assume u ∈ [[A]]ξ, then ρ(x :=
u) � Γ, x :A and hence by the induction hypothesis [[t]]ρ(x:=u) ∈ B. Since
([[λx.t]]ρ) u = ((λx.t)[~y := ρ(~y)]) u →β t[~y := ρ(~y), x := u] = [[t]]ρ(x:=u),
it follows from the saturation of [[B]]ξ that ([[λx.t]]ρ) u ∈ [[B]]ξ.

5.
Γ t :∀X.A

∀/E
Γ t :A[B/X]

Assume ρ, ξ � Γ in order to show ρ, ξ � t :A[B/X]. By the induction
hypothesis [[t]]ρ ∈ [[∀X.A]]ξ and this set is equal to

⋂
Y ∈SAT [[A]]ξ(X:=Y),

hence [[t]]ρ ∈ [[A]]ξ(X:=[[B]]ξ) = [[A[B/X]]]ξ.

6.
Γ t :A X /∈ FV (Γ)

∀/I
Γ t :∀X.A

Assume ρ, ξ � Γ in order to show ρ, ξ � t : ∀X.A. Since X /∈
FV (Γ), one also has ∀Y ∈ SAT that ρ, ξ(X := Y) � Γ, therefore
∀Y ∈ SAT , [[t]]ρ ∈ [[A]]ξ(X:=Y), then by the induction hypothesis
[[t]]ρ ∈ [[∀X.A]]ξ, i.e. ρ, ξ � t :∀X.A.

7.
Γ t :A Γ r :A

+/
I

Γ t + r :A

Assume ρ, ξ � Γ in order to show ρ, ξ � t + r :A. By the induction
hypothesis one has Γ � t :A and Γ � r :A, so [[t]]ρ ∈ [[A]]ξ and
[[r]]ρ ∈ [[A]]ξ. Since [[t + r]]ρ = (t + r)[~x := ρ(~x)] = t[~x := ρ(~x)] +
r[~x := ρ(~x)] = [[t]]ρ+ [[r]]ρ, it follows from the saturation of [[A]]ξ that
[[t + r]]ρ ∈ [[A]]ξ.

8.
Γ t :A

s/I
Γ α.t :A

Suppose ρ, ξ � Γ in order to show ρ, ξ � α.t :A. By the induction hypothesis
Γ � t :A, then [[t]]ρ ∈ [[A]]ξ. Since [[α.t]]ρ = (α.t)[~x := ρ(~x)] = α.(t[~x := ρ(~x)]) =
α.[[t]]ρ, it follows from the saturation of [[A]]ξ that [[α.t]]ρ ∈ [[A]]ξ.

�

B.15 Proof of Lemma 3.3.10
Lemma 3.3.10 (Correspondence with λ2la). Γ ` t :T ⇒ Γ\ t :T \.

Proof. We proceed by induction on the derivation of Γ ` t :T .

1. ax
Γ, x :U ` x :U

(Γ, x :U)\ = Γ\, x :U \, so by ax/, (Γ, x :U)\ x :U \.

2. ax0
Γ ` 0 : 0

By ax0
/, Γ\ 0 :A for any A ∈ T(λ2la), so take A = 0

\.

110

Appendix B. Proofs from Chapter 3

3.
Γ ` t :α.U → T Γ ` r :β.U

→E
Γ ` (t) r : (α× β).T

By the induction hypothesis Γ\ t :U \ → T \ and Γ\ r :U \,
so by rule →/

E , Γ\ (t) r :T \ = ((α× β).T)\.

4.
Γ, x :U ` t :T

→I
Γ ` λx.t :U → T

By the induction hypothesis one has Γ\, x :U \ t : T \, so by rule →/
I ,

Γ\ λx.t :U \ → T \ = (U → T)\.

5.
Γ ` t :∀X.T

∀E
Γ ` t :T [U/X]

By the induction hypothesis one has Γ\ t : (∀X.T)\ = ∀X.T \, so by rule
∀/E , Γ\ t :T \[U \/X].

6.
Γ ` t :T

∀I
Γ ` t :∀X.T

By the induction hypothesis Γ\ t :T \, so by rule ∀/I , Γ\ t :∀X.T \ = (∀X.T)\.

7.
Γ ` t :α.T Γ ` r :β.T

+I
Γ ` t + r : (α+ β).T

By the induction hypothesis Γ\ t : T \ and Γ\ r : T \, so by
rule +/

I , Γ\ t + r :T \ = ((α+ β).T)\.

8.
Γ ` t :T

sI
Γ ` α.t :α.T

By the induction hypothesis Γ\ t :T \, so by rule s/I , Γ\ α.t :T \ = (α.T)\.

�

B.16 Proof of Corollary 3.3.13(3)
Corollary 3.3.13 (Item 3 in the proof: Commutation). Algebraic rules and β-reduction commutes,
i.e. if t →a u and t →β r, then there exists a term t′ such that u →∗ t′ and r →∗ t′, where →∗ is a
reduction sequence of zero or more steps involving any rules.

Proof. Let t→a u and t→β r. We proceed by structural induction on t.

1. t cannot be a variable or 0, since it reduces.

2. t = λx.t1. Then u = λx.u1 and r = λx.r1 with t1 →a u1 and t1 →β r1. Then by the induction
hypothesis ∃t′1 such that u1 →β t′1 and r1 →a t′1. Take t′ = λx.t′.

3. t = (t1) t2. Cases

• r = (r1) t2 where t1 →β r1. Cases
– u = (u1) t2 where t1 →a u1. Then by the induction hypothesis, ∃t′1 such that r1 →a t′1

and u1 →β t′1. Take t′ = (t′1) t2.
– u = (t1) u2 where t2 →a u2. Take t′ = (r1) u2.

• r = (t1) r2. Analogous to previous case.
• r = r1[t2/x] where t1 = λx.r1 and t2 is a base term. Cases

– u = (λx.u1) t2 where r1 →a u1. Then notice that u →β u1[t2/x]. We proceed by
structural induction over r1 to prove that r1 →a u1 implies r1[t2/x]→a u1[t2/x] for any
t2 base term.
∗ r1 cannot be 0 or a variable, since it reduces.
∗ r1 = λy.r′1. Then u1 = λy.u′1 where r′1 →a u′1. Then by the induction hypothesis
r′1[t2/x]→a u′1[t2/x] which implies that λy.r′1[t2/x] →a-reduces to (λy.u′1)[t2/x].
∗ r1 = (r′1) r′′1 . Cases
· u1 = (u′1) r′′1 with r′1 →a u′1, then by the induction hypothesis r′1[t2/x]→a u′1[t2/x]
which implies that ((r′1) r′′1)[t2/x]→a ((u′1) r′′1)[t2/x].
· u1 = (r′1) u′′1 with r′′1 →a u′′1 . Analogous to previous case.

∗ r1 = r′1 + r′′1 . Cases
· u1 = u′1 +r′′1 with r′1 →a u′1, then by the induction hypothesis r′1[t2/x]→a u′1[t2/x]
which implies that (r′1 + r′′1)[t2/x]→a (u′1 + r′′1)[t2/x].
· u1 = r′1 + u′′1 with r′′1 →a u′′1 . Analogous to previous case.
· u1 = (α + β).r′′′1 where r′1 = α.r′′′1 and r′′1 = β.r′′′1 . Then notice that (α.r′′′1 +
β.r′′′1)[t2/x] = α.r′′′1 [t2/x] + β.r′′′1 [t2/x]→a (α+ β).r′′′1 [t2/x] = ((α+ β).r′′′1)[t2/x].

111

Appendix B. Proofs from Chapter 3

· u1 = (α+ 1).r′′′1 where r′1 = α.r′′′1 and r′′1 = r′′′1 . Analogous to previous case.
· u1 = (1 + 1).r′1 where r′1 = r′′1 . Analogous to previous case.
· u1 = r′1 and r′′1 = 0. Then (r′1 + 0)[t2/x] = r′1[t2/x] + 0→a r′1[t2/x].

∗ r1 = α.r′1. Cases
· u1 = u′1 with r′1 →a u′1. Then by the induction hypothesis one has r′1[t2/x] →a

u′1[t2/x], so (α.r′1)[t2/x]→a (α.u′1)[t2/x].
· u1 = (α×β).r′′1 with r′1 = β.r′′1 . Then (α.(β.r′′1))[t2/x] is equal to α.(β.r′′1 [t2/x])→a

(α× β).r′′1 [t2/x] = ((α× β).r′′1)[t2/x].
· u = α.r′′1 + α.r′′′1 and r′1 = r′′1 + r′′′1 . Then (α.(r′′1 + r′′′1))[t2/x] = α.(r′′1 [t2/x] +
r′′′1 [t2/x])→a α.r

′′
1 [t2/x] + α.r′′′1 [t2/x] = (α.r′′1 + α.r′′′1)[t2/x].

· u = r′1 and α = 1. Then (1.r′1)[t2/x] = 1.r′1[t2/x]→a r′1[t2/x].
· u = 0 and α = 0. Then (0.r′1)[t2/x] = 0.r′1[t2/x]→a 0 = 0[t2/x].
· u = 0 and r′1 = 0. Then (α.0)[t2/x] = α.0[t2/x] = α.0→a 0 = 0[t2/x].

– u = (λx.r1) u2 where t2 →a u2. Then u→β r1[u2/x]. We proceed by structural induction
over r1 to show that if t2 →a u2, then r1[t2/x]→∗a r1[u2/x].
∗ r1 = x, then x[t2/x] = t2 →a u2 = x[u2/x].
∗ r1 = y, then y[t2/x] = y = y[u2/x].
∗ r1 = 0, analogous to previous case.
∗ r1 = λy.r′1, then (λy.r′1)[t2/x] = λy.r′1[t2/x]. By the induction hypothesis r′1[t2/x]→∗a
r′1[u2/x], so λy.r′1[t2/x]→∗a λy.r′1[u2/x].
∗ r1 = (r′1) r′′1 . Then ((r′1) r′′1)[t2/x] = (r′1[t2/x]) r′′1 [t2/x]. By induction hypothesis
r′1[t2/x] →∗a r′1[u2/x] and r′′1 [u2/x], so (r′1[t2/x]) r′′1 [t2/x] →∗a (r′1[u2/x]) r′′1 [u2/x] =
((r′1) r′′1)[u2/x].

∗ r1 = r′1 + r′′1 . Then (r′1 + r′′1)[t2/x] = r′1[t2/x] + r′′1 [t2/x]. By induction hypothesis
r′1[t2/x] →∗a r′1[u2/x] and r′′1 [u2/x], so one has r′1[t2/x] + r′′1 [t2/x] →∗a r′1[u2/x] +
r′′1 [u2/x] = (r′1 + r′′1)[u2/x].

∗ r1 = α.r′1. Then (α.r′1)[t2/x] = α.r′1[t2/x]. By the induction hypothesis r′1[t2/x] →∗a
r′1[u2/x], so α.r′1[t2/x]→∗a α.r′1[u2/x] = (α.r′1)[u2/x].

4. t = t1 + t2. Cases

• u = (α+ β).u′ with t1 = α.u′ and t2 = β.u′. Cases

– r = α.r′ + β.u′ with u′ →β r′. Then notice that u = (α + β).u′ →β (α + β).r′ and
α.r′ + β.u′ →β α.r

′ + β.r′ →a (α+ β).r′.
– r = α.u′ + β.r′ with u′ →β r′. Analogous to previous case.

• u = (α+ 1).u′ with t1 = α.u′ and t2 = u′. Analogous to previous case.

• u = (1 + 1).u′ with t1 = t2. Analogous to previous case.

• u = t1 with t2 = 0. Then the only possibility for r is to be r′ + 0 where t1 →β r′. Then
r′ + 0→a r′, which closes the case.

5. t = α.t1. The only possibility for r is to be α.r′ where t1 →β r′. Cases

• u = (α× β).u1 with t1 = β.u1, then r′ = β.r′′ with u1 →β r′′. Then (α× β).u1 → (α× β).r′′

and α.(β.r′′)→a (α× β).r′′.

• u = α.u1 + α.u2 with t1 = α.(u1 + u2). Cases

– r′ = r1 + u2 with u1 →β r1, then α.(r1 + u2) →a α.r1 + α.u2 and α.u1 + α.u2 →β

α.r1 + α.u2.
– r′ = u1 + r2 with u2 →β r2, analogous to previous case.

• u = t1 with α = 1. Notice that 1.r′ →a r′.

• u = 0 with α = 0. Notice that α.r′ →a 0.

• u = 0 with t1 = 0. Absurd since t1 →β r′.
�

112

Appendix B. Proofs from Chapter 3

B.17 Proof of Theorem 3.4.3
Theorem 3.4.3 (Normal-form of terms in B have weight 1). Let Γ ` t :A be well-formed, then ω(t↓) = 1.

We need two preliminary lemmas:

Lemma B.17.1. If (t1) t2 is in normal form, then t1 = (x) ~r.

Proof. Structural induction on t1.

1. t1 = x. Done.

2. t1 = λx.r, then (t1) t2 → r[t2/x], which is a contradiction.

3. t1 = 0, then (t1) t2 → 0, which is a contradiction.

4. t1 = α.r, then (t1) t2 → α.(r) t2, which is a contradiction.

5. t1 = r + u, then t1 t2 → (r) t2 + (u) t2, which is a contradiction.

6. t1 = (u1) u2, then by the induction hypothesis u1 = (x) ~r, so (u1) u2 = (x) ~r′, where ~r′ = ~r,u2.
�

Lemma B.17.2. Γ ` (x) ~r :T and (x) ~r is in normal form, then ∃A ∈ T(λ2la), α ∈ S such that T ≡ α.A.

Proof. Induction on the derivation of Γ ` (x) ~r :T .

1. ax
Γ, x :T ` x :T

Then T ∈ T(λ2la), because in B contexts have only classic types.

2.
Γ ` (x) ~r :α.(U → T) Γ ` t :β.U

→E
Γ ` ((x) ~r) t : (α× β).T

Then by the induction hypothesis, U → T ∈
T(λ2la), so T ∈ T(λ2la).

3.
Γ ` (x) ~r :∀X.T

∀E
Γ ` (x) ~r :T [A/X]

Then by the induction hypothesis ∃B ∈ T(λ2la), α ∈ S such that
∀X.T ≡ α.B, so ∃C ∈ T(λ2la) such that T ≡ α.C, then T [A/X] ≡
(α.C)[A/X] ≡ α.C[A/X]. Notice that C[A/X] ∈ T(λ2la).

4.
Γ ` (x) ~r :T

∀I
Γ ` (x) ~r :∀X.T

Then by the induction hypothesis ∃A ∈ T(λ2la), α ∈ S such that
T ≡ α.A, so ∀X.T ≡ ∀X.α.A ≡ α.∀X.A.

�

Now we can prove the theorem. However, instead, we prove the most general case: Γ ` t :α.A ⇒
ω(t↓) = α

Proof. Structural induction on t↓. We take Γ ` t↓ :α.A, which is true by Theorem 3.2.1.

1. t↓= 0. Then ω(t↓) = 0. In addition, by Lemma 3.2.17, α = 0.

2. t↓= x or t↓= λx.t′. Then ω(t↓) = 1. In addition, by Lemma 3.2.16, α = 1.

3. t↓= γ.t′. Then ω(t↓) = γ.ω(t′). By Lemma 3.2.15, ∃U ∈ U , δ ∈ S such that α.A ≡ γ.δ.U , and by
Lemma 3.2.3, α = γ × δ. Cases:

α = 0 Cases:
γ = 0 Then ω(γ.t′) = 0× ω(t′) = 0, or
γ 6= 0, δ = 0 Then by Lemma 3.2.10, Γ ` t′ : 0.U ≡ 0.A, so by the induction hypothesis ω(t′) =

0, and then ω(γ.t′) = γ × 0 = 0.
α 6= 0 Then A ≡ U , so by Lemma 3.2.10, Γ ` t′ : δ.A. Then by the induction hypothesis ω(t′) = δ.

Notice that ω(t↓) = γ × ω(t′) = γ × δ = α.

4. t ↓= t1 + t2. Then ω(t ↓) = ω(t1) + ω(t2). By Lemma 3.2.12, ∃σ, φ ∈ S such that Γ ` t1 : σ.A
and Γ ` t2 : φ.A with σ + φ = α. Then by the induction hypothesis ω(t1) = σ and ω(t2) = φ, so
ω(t1) + ω(t2) = σ + φ = α.

113

Appendix B. Proofs from Chapter 3

5. t ↓= (t1) t2. Then ω(t ↓) = ω(t1) × ω(t2). By Lemma 3.2.8, ∃U ∈ U , T ∈ T , β, δ ∈ S such that
Γ ` t1 : β.U → T and Γ ` t2 : δ.U with T � A and β × δ = α. Since A ∈ T(λ2la), T ∈ T(λ2la)
and since (t1) t2 is in normal form, by Lemma B.17.1, t1 is a variable applied to something else,
so by Lemma B.17.2, U → T ∈ T(λ2la), which implies that U ∈ T(λ2la). Then by the induction
hypothesis, ω(t1) = β and ω(t2) = δ, so ω(t↓) = ω(t1)× ω(t2) = β × δ = α.

�

114

Appendix C

Proofs from Chapter 4

C.1 Proof of Lemma 4.2.3
Lemma 4.2.3 (Arrows comparison). For any types T,R and any unit types U, V , if V → R � U → T ,
then ∃ ~W, ~X such that U → T ≡ (V → R)[~W/ ~X].

Proof. The proof is analogous to the proof of Lemma 3.2.6 (cf. Appendix B.2), however simpler, since
the order in Additive is given only between unit types.

A map (·)◦ : ΛU 7→ ΛU is defined by

X◦ = X (U → T)◦ = U → T (∀X.U)◦ = U◦

We need two intermediate results.

1. For any types U, V , ∃W such that (U [V/X])◦ ≡ U◦[W/X].

2. For any types U, V , if U � V then ∃ ~W, ~X / V ◦ ≡ U◦[~W/ ~X].

Proofs

1. Structural induction on U

U = X then (X[V/X])◦ = V ◦ = X[V ◦/X] = X◦[V ◦/X].
U = Y then (Y [V/X])◦ = Y = Y ◦[V/X].
U = W → T then ((W → T)[V/X])◦ = (W [V/X] → T [V/X])◦ = W [V/X] → T [V/X] = (W →

T)[V/X] = (W → T)◦[V/X].
U = ∀Y.U ′ then ((∀Y.U ′)[V/X])◦ = (∀Y.U ′[V/X])◦ = (U ′[V/X])◦, which is, by the induction hy-

pothesis, equivalent to U ′◦[W/X] = (∀Y.U ′)◦[W/X].

2. It suffices to show this for U ≺ V .

Case 1 V ≡ ∀X.U . Then V ◦ ≡ U◦.
Case 2 U ≡ ∀X.U ′ and V ≡ U ′[W/X] then by the intermediate result 1 one has V ◦ ≡ U ′◦[W/X] ≡

U◦[W/X].

Proof of the lemma. U → T ≡ (U → T)◦, by the intermediate result 2, this is equivalent to (V →
R)◦[~W/ ~X] ≡ (V → R)[~W/ ~X]. �

C.2 Proof of Lemma 4.2.4
Lemma 4.2.4 (4-subsumption). For any context Γ, any term t and any unit types U , V such that
U 4 V and no free type variable in U occurs in Γ, if Γ ` t :U then Γ ` t :V .

Proof. Analogous to proof of Lemma 3.2.13, by replacing all the occurrences of general types for unit
types. �

115

Appendix C. Proofs from Chapter 4

C.3 Proof of Lemma 4.2.5
Lemma 4.2.5 (Generation lemma (app)). For any Γ, T, t and u, if Γ ` (t) u :T is derivable, then there
are α, β ∈ N0, and some types U (in U), T1, . . . , Tα such that Γ ` t :

∑α
i=1(U → Ti) and Γ ` u :

∑β
j=1 U

with
∑α
i=1

∑β
j=1 Ti 4 T and each derivation of typing judgement for t and u smaller than the one

for (t) u.

Proof. Let Sn = Γ ` (t) u :T . Induction on n.

1.

Γ ` t :

α∑
i=1

U → Ti Γ ` u :

β∑
j=1

U

→E

Γ ` (t) u :

α∑
i=1

β∑
j=1

Ti

Trivial case.

2.
Γ ` (t) u :∀X.U

∀E
Γ ` (t) u :U [V/X]

By the induction hypothesis ∃r, s, α, β ∈ N,W ∈ U , T1, . . . , Tn ∈ T
such that Sr = Γ ` t :

∑α
i=1(W → Ti) and Ss = Γ ` u :

∑β
j=1W

with
∑α
i=1

∑β
j=1 Ti � ∀X.U and where max(r, s) < n − 1. Since∑α

i=1

∑β
j=1 Ti � ∀X.U ≺ U [V/X] then by transitivity

∑α
i=1

∑β
j=1 Ti �

U [V/X]. Remark that there is no conflict with the order defined only
for unit types, it just means that

∑α
i=1

∑β
j=1 Ti is equivalent to a unit

type.

3.
Γ ` (t) u :U

∀I
Γ ` (t) u :∀X.U

By the induction hypothesis ∃r, s, α, β ∈ N, V ∈ U , T1, . . . , Tn ∈ T such
that Sr = Γ ` t :

∑α
i=1(V → Ti) and Ss = Γ ` u :

∑β
j=1 V with∑α

i=1

∑β
j=1 Ti � U and where max(r, s) < n − 1. Since

∑α
i=1

∑β
j=1 Ti �

U ≺ ∀X.U then by transitivity
∑α
i=1

∑β
j=1 Ti � ∀X.U .

�

C.4 Proof of Lemma 4.2.6
Lemma 4.2.6 (Generation lemma (abs)). For any Γ, t and T , if Γ ` λx.t : T is derivable, then there
exist a unit type U and a type R such that Γ, x :U ` t :R and U → R 4 T .

Proof. Let Sn = Γ ` λx.t :T . Induction on n.

1.
Γ, x :U ` t :T

→I
Γ ` λx.t :U → T

This is the trivial case.

2.
Γ ` λx.t :∀X.U

∀E
Γ ` λx.t :U [V/X]

By the induction hypothesis ∃W ∈ U , R ∈ T such that Γ, x : V ` t :R
and V → R � ∀X.U ≺ U [V/X].

3.
Γ ` λx.t :U

∀I
Γ ` λx.t :∀X.U

By the induction hypothesis ∃V ∈ U , R ∈ T such that Γ, x : V ` t :R and
V → R � U ≺ ∀X.U .

�

C.5 Proof of Lemma 4.2.7
Lemma 4.2.7 (Generation lemma (sum)). For any Γ, T , r and u, if Γ ` r + u :T , then there are some
types R,S such that Γ ` r :R and Γ ` u :S with R + S ≡ T and typing derivations for r and u smaller
than the one for r + u.

Proof. Let Γ ` r + u :T . Induction on n.

1.
Γ ` r + u :∀X.U

∀E
Γ ` r + u :U [V/X]

Then by the induction hypothesis ∃r, s ∈ N, R, S ∈ T such that Sr =
Γ ` r :R and Ss = Γ ` u :S with R+S ≡ ∀X.U ≺ U [V/X] and where
max(r, s) < n− 1.

116

Appendix C. Proofs from Chapter 4

2.
Γ ` r + u :U

∀I
Γ ` r + u :∀X.U

Analogous to previous case.

3.
Γ ` r :R Γ ` u :S

+I
Γ ` r + u :R+ S

Then take Sr = Γ ` r :R and Ss = Γ ` u : S and notice that
max(r, s) = n− 1 < n.

�

C.6 Proof of Lemma 4.2.8
Lemma 4.2.8 (Substitution). For any Γ, T , U , b and t,

1. Γ ` t :T ⇒ Γ[~U/ ~X] ` t :T [~U/ ~X].

2. { Γ, x :U ` t :T and Γ ` b :U } ⇒ Γ ` t[b/x] :T .

Proof of item 1. We re-use the proof of Lemma 3.2.13 (cf. Appendix B.8)

• Cases 1, 2 and 4 remain the same.

• Case 3: replace all the occurrences of α by
∑α
i=1 and β by

∑β
i=1.

• Cases 5 and 6: take T as unit type.

• Remove cases 7 and 8

• Add the following case:

Γ ` t :T Γ ` r :R
+I

Γ ` t + r :T +R

By the induction hypothesis Γ[~U/ ~X] ` t :T [~U/ ~X] and also Γ[~U/ ~X] `
r :R[~U/ ~X], so by rule +I , Γ[~U/ ~X] ` t + r :T [~U/ ~X] +R[~U/ ~X]. Notice
that T [~U/ ~X] +R[~U/ ~X] = (T +R)[~U/ ~X].

�

Proof of item 2. We re-use the proof of Lemma 3.2.13 (cf. Appendix B.8)

• Cases 1, 2, 3 and 5 remain the same.

• Case 4: replace all the occurrences of α by
∑α
i=1 and β by

∑β
i=1.

• Cases 6 and 7: take T as unit type.

• Remove cases 8 and 9

• Add the following case:

Γ, x : U ` t :T Γ `, x : Ur :R
+I

Γ, x : U ` t + r :T +R

By the induction hypothesis Γ ` t[b/x] : T and also Γ `
r[b/x] :R, so by rule +I , Γ ` t[b/x]+r[b/x] :T +R. Notice
that t[b/x] + r[b/x] = (t + r)[b/x].

�

C.7 Proof of Theorem 4.2.1
Theorem 4.2.1 (Subject reduction). For any terms t, t′, any context Γ and any type T , if t→ t′ then
Γ ` t :T ⇒ Γ ` t′ :T .

Proof. We treat separately every rule which can be applied in t→ t′.

Rule (u + t) r→ (u) r + (t) r: Let Γ ` (u+t) r :T . Then by Lemma 4.2.5, there exist α, β ∈ N, U ∈ U
and T1, . . . , Tn such that Γ ` u + t :

∑α
i=1(U → Ti), Γ ` r :

∑β
j=1 U and

∑α
i=1

∑β
j=1 Ti4T . By

Lemma 4.2.7, there are some types R,S such that Γ ` u :R, Γ ` t :S and R+ S ≡
∑α
i=1(U → Ti).

In addition, by remark 4.1.2, R ≡
∑δ
j=1 Vj and S ≡

∑γ
j=δ+1 Vj for some V1, . . . , Vδ, . . . , Vγ in U

or equal to 0 (with 0 ≤ δ ≤ γ). So
∑δ
j=1 Vj +

∑γ
j=δ+1 Vj ≡

∑α
i=1 U → Ti. Thus γ = α and

117

Appendix C. Proofs from Chapter 4

(possibly after re-labelling the Tj ’s),
∑δ
j=1 Vj ≡

∑δ
j=1 U → Tj and

∑α
j=δ+1 Vj ≡

∑α
j=δ+1 U → Tj

Then, by rule ≡, Γ ` u :
∑δ
j=1 U → Ti and Γ ` t :

∑α
j=δ+1 U → Tj . So using →E we derive

Γ ` (u) r :
∑δ
i=1

∑β
j=1 Ti and Γ ` (t) r :

∑α
k=δ+1

∑β
j=1 Tk and then, using +I , one gets Γ `

(u) r + (t) r :
∑α
i=1

∑β
j=1 Ti. Since

∑α
i=1

∑β
j=1 Ti4T , we can conclude with Lemma 4.2.4 that

Γ ` (u) r + (t) r :T .

Rule (r) (u + t)→ (r) u + (r) t. This is analogous to the previous case.

Rule (0) t→ 0. Let Γ ` (0) t :T . Then by Lemma 4.2.5 ∃α, β, U, T1, . . . , Tα such that Γ ` 0 :
∑α
i=1(U →

Ti) and Γ ` t :
∑β
j=1 U with

∑α
i=1

∑β
j=1 Ti4T . Then by Lemma 4.2.10, α = 0, and so Then∑α

i=1

∑β
j=1 Ti ≡ 0. Thus 0 ≡

∑α
i=1

∑β
j=1 Ti4T . Notice that by ax0, Γ ` 0 : 0. Then by

Lemma 4.2.4, Γ ` 0 :T .

Rules (t) 0→ 0. This is analogous to the previous case.

Rules t + 0→ t. Let Γ ` t + 0 :T . By Lemma 4.2.7, there are some types R and S such that Γ ` t :R
and Γ ` 0 :S, with R + S ≡ T . Then by Lemma 4.2.10, S ≡ 0 and so T ≡ R + S ≡ R. By rule ≡,
Γ ` t :T .

Rule (λx.t) b→ t[b/x]. Let Γ ` (λx.t) b : T . Then by Lemma 4.2.5, ∃α, β, U , T1, . . . , Tn such that
Γ ` λx.t :

∑α
i=1(U → Ti) and Γ ` b :

∑β
j=1 U with

∑α
i=1

∑β
j=1 Ti4T . By Lemma 4.2.11, α = β = 1,

so Γ ` λx.t : U → T1, and Γ ` b : U . Then by Corollary 4.2.9, Γ, x : U ` t : T1 and hence by
Lemma 4.2.8, Γ ` t[b/x] :T1. In addition, since T14T , by Lemma 4.2.4, Γ ` t[b/x] :T .

Rule t + r→ r + t. Let Γ ` t + r : T . Then by Lemma 4.2.7, ∃R,S such that Γ ` t :R and Γ ` r : S
with R + S ≡ T . Then by rule +I , Γ ` r + t : S + R and since S + R ≡ R + S ≡ T , by rule ≡,
Γ ` r + t :T .

Rule (t + r) + u→ t + (r + u). Let Γ ` (t + r) + u : T . Then by Lemma 4.2.7, ∃R1, R2 such that
Γ ` t + r :R1 and Γ ` u :R2 with R1 + R2 ≡ T . Then by Lemma 4.2.7 again, ∃S1, S2 such that
Γ ` t : S1 and Γ ` r : S2 with S1 + S2 ≡ R1. So using rule +I twice in the correct order, we can
derive Γ ` t+ (r+u) :S1 + (S2 +R2). Since S1 + (S2 +R2) ≡ (S1 +S2) +R2 ≡ R1 +R2 ≡ T , then
using rule ≡, Γ ` t + (r + u) :T .

Rule t + r→ t′ + r as a consequence of t→ t′. Let Γ ` t + r : T , then by Lemma 4.2.7, ∃S,R ∈ T
such that Γ ` t :S and Γ ` r :R with R + S4T . Then by the induction hypothesis, Γ ` t′ :S, so
using rule +I one can derive Γ ` t′ + r :R+ S. Notice that by Lemma 4.2.4,Γ ` t′ + r :T .

Rule r + t→ r + t′ as a consequence of t→ t′. Analogous to previous case.

Rule (r) t→ (r) t′ as a consequence of t→ t′. Let Γ ` (r) t : T , then by Lemma 4.2.5, ∃α, β ∈
N, U ∈ U , T1, . . . , Tα ∈ T / Γ ` r :

∑α
i=1(U → Ti) and Γ ` t :

∑β
j=1 U with

∑α
i=1

∑β
j=1 Ti4T . By

the induction hypothesis, Γ ` t′ :
∑β
j=1 U , so using rule →E , one has Γ ` (r) t′ :

∑α
i=1

∑β
j=1 Ti.

Notice that by Lemma 4.2.4, Γ ` (r) t′ :T .

Rule (t) r→ (t′) r as a consequence of t→ t′. Analogous to previous case.

Rule λx.t→ λx.t′ as a consequence of t→ t′. Let Γ ` λx.t :T , then by Lemma 4.2.6, ∃U ∈ U , R ∈
T such that U → R4T and Γ, x :U ` t :R. Then by the induction hypothesis, Γ, x :U ` t′ :R, so
using rule →I , one obtain Γ ` λx.t′ :U → R. Notice that by Lemma 4.2.4, Γ ` λx.t′ :T .

�

C.8 Proof of Lemma 4.3.4
Lemma 4.3.4. T[w 7→ T′[s]] ≡ T ◦ T′[wv 7→ s(v)] where w denotes a `-leaf of T, and v a `-leaf of T’.

Proof. Induction on T.

T = Z. Then Z[w 7→ T′[s]] = 0 and Z ◦ T′[wv 7→ s(v)] = Z[wv 7→ s(v)] = 0.

118

Appendix C. Proofs from Chapter 4

T = `. Then `[w 7→ T′[s]] = T′[s] and ` ◦ T′[wv 7→ s(v)] = T′[wv 7→ s(v)] = T′[s].

T = S(T1,T2). Then S(T1,T2)[w 7→ T′[s]] = T1[lw 7→ T′[s]] + T2[rw 7→ T′[s]] which by the induction
hypothesis is equal to T1 ◦T′[lwv 7→ s(v)] +T2 ◦T′[rwv 7→ s(v)] = S(T1 ◦T′,T2 ◦T′)[wv 7→ s(v)] =
S(T1,T2) ◦ T′[wv 7→ s(v)].

�

C.9 Proof of Lemma 4.3.12

Lemma 4.3.12. If T = T[w 7→ Uw] is a type of Addstruct, then |T | = T[w 7→ |Uw|].

Proof. Induction on T .

1. T = U . Then T = ` and so T[w 7→ Uw] is just Uε. Since U = `[ε 7→ Uε], one has |U | = |`[ε 7→
Uε]| = |Uε| = `[ε 7→ |Uε|].

2. T = 0. Then T = Z and so Z[w 7→ Uw] = 0 and |T | = |Z[w 7→ Uw]| = |0| = ? = Z[w 7→ |Uw|].

3. T = R + S. Then T = S(T1,T2) where R = T1[w 7→ Ulw] and S = T2[w 7→ Urw]. Then by the
induction hypothesis |R| = T1[w 7→ |Ulw|] and |S| = T2[w 7→ |Urw|]. So, |T | = |R+S| = |R|×|S| =
T1[w 7→ |Ulw|]× T2[w 7→ |Urw|] = S(T1,T2)[w 7→ |Uw|] = T[w 7→ |Uw|].

�

C.10 Proof of Theorem 4.3.21

First we need the following intermediate result.

Lemma C.10.1. Let D1 = Γ, x :U ` t : T and D2 = Γ ` b :U , then ∃D3 such that [t]D1 [[b]D2/x] =
[t[b/x]]D3

.

Proof. We call D′1 to the last derivation from where to obtain D1, using rule R. If there are two sequents
in the last step, we call them D′1 and D′′1 . If R = ∀I , then by the induction hypothesis, ∃D3 such that
[t]D′1 [[b]D2

/x] = [t[b/x]]D3
. Notice that [t]D1

[[b]D2
/x] = [t]D′1 [[b]D2

/x]. The case R = ∀E is similar.
For any other case, we proceed by structural induction on t.

1. t = x. Then [x]D1 = x and so [x]D1 [[b]D2/x] = [b]D2 = [x[b/x]]D2 . Take D3 = D2.

2. t = y. Then [y]D1
= y and so [y]D1

[[b]D2
/x] = y = [y[b/x]]D1

. Take D3 = D1.

3. t = 0. Then [0]D1
= ? and so [0]D1

[[b]D2
/x] = ? = [0[b/x]]D1

. Take D3 = D1.

4. t = λy.r. Then R =→I . By the induction hypothesis, ∃D3 such that [r]D′1 [[b]D2/x] = [r[b/x]]D3 .
Then [t]D1 [[b]D2/x] = (λy.[r]D′1)[[b]D2/x] = λy.([r]D′1 [[b]D2

/x]) = λy.[r[b/x]]D3
= [t[b/x]]D′3 , for

some D′3 which is either obtained by applying →I from D′3, if y is in the context of the last sequent
of D′3, or by adding it to the context of each sequent in D′3.

5. t = t1 + t2. By the induction hypothesis ∃D3 and D′3 such that [t1]D′1 [[b]D2
/x] = [t1[b/x]]D3

and
[t2]D′′1 [[b]D2

/x] = [t2[b/x]]D′3 . Then

[t1 + t2]D1
[[b]D2

/x] = 〈[t1]D′1 , [t1]D′1〉[[b]D2
/x]

= 〈[t1]D′1 [[b]D2
/x], [t1]D′1 [[b]D2

/x]〉
= 〈[t1[b/x]]D3

, [t2[b/x]]D′3〉
= [t1[b/x] + t2[b/x]]D′′3

where D′′3 is obtained from D3 and D′3 by rule +I . Notice that t1[b/x] + t2[b/x] = (t1 + t2)[b/x].

119

Appendix C. Proofs from Chapter 4

6. t = (t1) t2. By the induction hypothesis ∃D3 and D′3 such that [t1]D′1 [[b]D2
/x] = [t1[b/x]]D3

and
[t2]D′′1 [[b]D2

/x] = [t2[b/x]]D′3 . Then

[(t1) t2]D1
[[b]D2

/x] = T ◦ T′[wv 7→ πw([t1]D′1)πv([t2]D′′1)][[b]D2
/x]

= T ◦ T′[wv 7→ πw([t1]D′1 [[b]D2
/x])πv([t2]D′′1 [[b]D2

/x])]

= T ◦ T′[wv 7→ πw([t1[b/x]]D3
)πv([t2[b/x]]D′3)]

= [(t1[b/x]) t2[b/x]]D′′3

where D′′3 is obtained from D3 and D′3 by rule →E′ . Notice that (t1[b/x]) t2[b/x] = ((t1) t2)[b/x].
�

Now we can prove the theorem.
Theorem 4.3.21. Let Γ ` t : T be derivable (by D) in Addstruct, and t→ r. If the reduction is not due
to rule t + 0→ t, then there is D’ deriving Γ ` r : T , and [t]D →∗ [r]D′ .

Proof. Induction over D.

1. D = ax or ax0. Impossible since nor x nor 0 can reduce.

2. D =
Γ ` t :T[w 7→ (U → Tw)] Γ ` u :T′[v 7→ U]

→E′

Γ ` (t) u :T◦T′[wv 7→ Tw]

Then [(t) u]D = T◦T′[wv 7→ πw̄([t]D1
)πv̄([u]D2

)].

Consider (t) u→ r.

• If r = (t′) u with t→ t′, then by the induction hypothesis there is D3 = Γ ` t′ : T[w 7→ (U →
Tw)] such that [t]D1 →∗ [t′]D3 . Then take

D4 =
Γ ` t′ :T[w 7→ (U → Tw)] Γ ` u :T′[v 7→ U]

→E′

Γ ` (t′) u :T◦T′[wv 7→ Tw]

Notice that [(t) u]D =T◦T′[wv 7→ πw̄([t]D1)πv̄([u]D2)] →∗ T◦T′[wv 7→ πw̄([t′]D3)πv̄([u]D2)] =
[(t′) u]D4 .
• If r = (t) u′ with u→ u′, this is analogous to the previous case.
• If r = (t1) u + (t2) u with t = t1 + t2, then by Lemma 4.2.7, ∃T1, T2 such that Γ ` t1 : T1

and Γ ` t2 : T2 with T1 + T2 = T[w 7→ (U → Tw)]. Notice that this lemma has been proved
for Additive, not for Addstruct, however to prove the equivalent result is trivial and we use
it without distinction. Let T1 = T1[u1] and T2 = T2[u2]. Then T1 + T2 = S(T1,T2)[lw 7→
u1(w), rw 7→ u2(w)] = T[w 7→ (U → Tw)]. Also notice that

T◦T′[u] = S(T1◦T′,T2◦T′)[u] = T1◦T′[u] + T2◦T′[u] (C.1)

Take u = wv 7→ πw̄([t1 + t2]D1
)πv̄([u]D2

).
On the other hand, for any D′, [(t1) u + (t2) u]D′ = [(t1) u]D′1 + [(t2) u]D′2 . Since we know
the type for t1 and the type for t2, we can derive
Γ`t1:T1[w1 7→ (U→ Tw1

)] Γ`u:T′[v 7→ U]
→E′

Γ ` (t1) u :T1◦T′[w1v 7→ Tw1
]

and
Γ`t2:T2[w2 7→ (U→ Tw2

)] Γ`u:T′[v 7→ U]
→E′

Γ ` (t2) u :T2◦T′[w2v 7→ Tw2
]

So, using those derivation trees as D′1 and D′2 the following translation follows:
[(t1) u]D′1 = T1◦T′[w1v 7→ πw̄([t1]D′11)πv̄([u]D2

)] and
[(t1) u]D′2 = T1◦T′[w2v 7→ πw̄([t2]D′21)πv̄([u]D2

)].
So,

[(t1) u+ (t2) u]D′ = T1◦T′[w1v 7→ πw̄([t1]D′11)πv̄([u]D2
)] +T1◦T′[w2v 7→ πw̄([t2]D′21)πv̄([u]D2

)]
(C.2)

Notice that wv 7→ πw̄([t1 + t2]D1
)πv̄([u]D2

) is equal to lw1v 7→ πw̄([t1]D′11)πv̄([u]D2
), rw2v 7→

πw̄([t2]D′21)πv̄([u]D2) making (C.1)=(C.2).

120

Appendix C. Proofs from Chapter 4

• If r = (t) u1 + (t) u2 with u = u1 + u2, this is analogous to the previous case.

• If r = 0 with t = 0, then by Lemma 4.2.10, T[w 7→ (U → Tw)] = 0 = Z[w 7→ (U → Tw)].
Then [(0) u]D = Z◦T′[wv 7→ πw̄([0]D1

)πv̄([u]D2
)] = Z[wv 7→ πw̄([0]D1

)πv̄([u]D2
)] = ?. Take

D′ = ax0
Γ ` 0 : 0

, so [0]D′ = ?.

• If r = 0 with u = 0, this is analogous to the previous case.

• If r = t′[b/x] with t = λx.t′ and u = b, then by Lemma 4.2.11 T = T′ = `, so

`◦`[wv 7→ πw̄([λx.t′]D1
)πb̄([b]D2

)] = `[wv 7→ πw̄([λx.t′]D1
)πb̄([b]D2

)] = [λx.t′]D1
[b]D2

In the case where the last rule in D1 is ∀I or ∀E , take D′ as the same derivation until the
previous sequent (before the use of this last rule). Repeat the process until you obtain a D′
such that the last derivation is done by rule →I . Then [λx.t′]D1

[b]D2
= [λx.t′]D′ [b]D2

=
λx.[t′]D′′ [b]D2

→ [t′]D′′ [[b]D2
/x]. By Lemma C.10.1, ∃D3 such that this last expression is

equal to [t[b/x]]D3
.

3. D =
Γ, x :U ` t :T

→I
Γ ` λx.t :T

Then [λx.t]D = λx.[t]D′ . Notice that the only possible reduction for λx.t is when t → t′, then by
the induction hypothesis ∃D1 = Γ, x :U ` t′ :T such that [t]D′ →∗ [t′]D1

. Let D2 be obtained from
D1 by rule →I , then [λx.t]D = λx.[t]D′ →∗ λx.[t′]D1

= [λx.t′]D2
.

4. D =
Γ ` t :∀X.U

∀E
Γ ` t :U [V/X]

Then [t]D = [t]D′ . By the induction hypothesis, ∃D1 = Γ ` t′ :∀X.U such that [t]D′ →∗ [t′]D1
.

5. D = ∀I . This is analogous to the previous case.

6. D =
Γ ` t :T Γ ` u :R

+I
Γ ` t + u :T +R

Then [t + u]D = 〈[t]D1
, [u]D2

〉. Cases

• t′ = r + u with t → r. Then by the induction hypothesis, ∃D′ = Γ ` r : T such that
[t]D1

→∗ [r]D′ . Let D3 be obtained from D′ and D2 by rule +I . So [t+u]D = 〈[t]D1
, [u]D2

〉 →∗
〈[r]D′ , [u]D2

〉 = [r + u]D3
.

• t′ = t + r with u→ r. This is analogous to the previous case.
�

C.11 Proof of Corollary 4.3.22

Corollary 4.3.22 (Strong normalisation). If Γ ` t :T is derivable in Additive, then t is strongly normal-
ising.

Proof. First notice that if Γ ` t :T is derivable in Additive, then by Proposition 4.3.7, ∃T ′ ≡ T such that
Γ ` t :T ′ is derivable in Addstruct. Let us call this derivation D. Then by Theorem 4.3.14, |Γ| `F [t]D : |T ′|
is derivable in System FP .

Assume t is not strongly normalising, say t → t1 → t2 → · · · . For a first approximation, consider
that none of these reductions happens by rule t+0→ t. Then by Theorem 4.3.21 there exists derivations
D1,D1, . . ., such that [t]D →∗ [t1]D1

→∗ [t2]D1
→∗ · · · . However, due to the strong normalisation of Fp,

there exists a natural number n such that, ∀i ≥ n, [ti]Di = [ti+1]Di+1
.

We proceed in two steps:

1. We prove that, if ti → ti+1 and [ti]Di = [ti+1]Di+1
, then the reduction is an algebraic rule, (i.e. not

a beta-reduction).

121

Appendix C. Proofs from Chapter 4

2. Then we show that algebraic rules are strictly decreasing with respect to the following measure,
which is always positive: |0| = 0, |x| = 1, |λx.t| = |t|, |t+r| = 2+|t|+|r|, |(t) r| = (3|t|+2)(3|r|+2).

By item 1 only algebraic rules happen, which are strictly decreasing in the positive measure of item 2.
Since t + 0→ t is also strictly decreasing, then t has to be strongly normalising.

We proceed with the proofs:

1. We show that if ti →β ti+1, then [ti]Di 6= [ti+1]Di+1
. Induction on the structure of ti. Notice

that we do not consider the cases of Di ending with ∀I or ∀E , since these rules do not change the
translations.

(λx.r) b→β r[b/x]: We can assume that Di ends with →E , so [(λx.r) b]Di = T ◦ T′[wv 7→
πw([λx.r]Di1)πv([b]Di2)], where Di1 ends with the sequent assigning a type with the struc-
ture of T to the term λx.r and Di2 ends with the sequent assigning a type with the structure
of T′ to b. Notice that by Lemma 4.2.11, T = T′ = `, so [(λx.r) b]Di = T ◦ T′[wv 7→
πw([λx.r]Di1)πv([b]Di2)] = ([λx.r]Di1) [b]Di2 = (λx.[r]D′i1) [b]Di2 , where D′i1 is the derivation
from where Di1 is obtained with →I . We can trivially ensure that this term cannot be equal
to [r[b/x]]Di+1 , for any Di+1.

r1 + r2 → r′1 + r2 with r1 →β r′1: We can assume that Di ends with +I . Then [r1 + r2]Di =
〈[r1]Di1 , [r2]Di2〉, where [rj]Dij is the derivation of the type for rj . Analogously, [r′1 +r2]Di+1

=
〈[r′1]Di+1,1

, [r2]Di+1,2
〉. By the induction hypothesis, [r1]Di1 6= [r′1]Di+1,1

, so 〈[r1]Di1 , [r2]Di2〉 6=
〈[r′1]Di+1,1

, [r2]Di+1,2
〉.

r1 + r2 → r1 + r′2 with r2 →β r′2: Analogous to previous case.

λx.r→ λx.r′ with r→β r′: We can assume that Di ends with →I , so there is a derivation D′i for
r, where x is in the context and [λx.r]Di = λx.[r]D′i , which by induction hypothesis is not
equal to λx.[r′]D′i+1

= [λx.r′]Di+1
.

(r1) r2 → (r′1) r2 with r1 →β r′1: We can assume that Di ends with →E . Then [(r1) r2]Di =
T◦T′[wv 7→ πw([r1]Di1)πv([r2]Di2)], where Di1 ends with the sequent assigning a type with the
structure of T to the term r1 and Di2 ends with the sequent assigning a type with the structure
of T′ to r2. By the induction hypothesis, there is no Di+1,1 such that [r1]Di1 = [r′1]Di+1,1

, so
there is no Di+1 such that [(r1) r2]Di = [(r′1) r2]Di+1 .

(r1) r2 → (r1) r′2 with r2 →β r′2: Analogous to previous case.

2. Rule by rule analysis.

Rule (u + t) r→ (u) r + (t) r: |(u + t) r| = (4 + 3|u| + 3|t|)(3|r| + 2) + 2 + 6(2|r| + 1) > (4 +
3|u|+ 3|t|)(3|r|+ 2) + 2 = |(u) r + (t) r|.

Rule (r) (u + t)→ (r) u + (r) t: |(r) (u + t)| = (3|r| + 2)(4 + 3|u| + 3|t|) + 2 + 6(2|r| + 1) >
(3|r|+ 2)(4 + 3|u|+ 3|t|) + 2 = |(r) u + (r) t|.

Rule (0) t→ 0: |(0) t| = 6|t|+ 4 > 0 = |0|.
Rule (t) 0→ 0: |(0) t| = 6|t|+ 4 > 0 = |0|.
Rule t + 0→ t: |t + 0| = 2 + |t| > |t|.

�

122

Appendix D

Proofs from Chapter 5

D.1 Proof of Lemma 5.3.2
Lemma 5.3.2 (�-subsumption). For any context Γ, any term t and any types T,R such that T � R
and no free type variable in T occurs in Γ. Then Γ ` t :T implies Γ ` t :R.

Proof. One can assume ∃S1, . . . , Sn / T ≡ S1 ≺ S2 ≺ · · · ≺ Sn ≡ R (if not, there must be an equivalence
instead, so the lemma would hold due to the ≡-rule). So ∀i one has Si ≡

∑n
j=1 αj .U

i
j , then Γ `

t :
∑n
j=1 αj .U

i
j and using ∀E or ∀I , we get Γ ` t : :

∑n
j=1 αj .U

i+1
j . Since

∑n
j=1 αj .U

i+1
j ≡ Si+1 we finally

get Γ ` t :Si+1, and so
Γ ` t :T T ≡ S1

≡
Γ ` t :S1
=======
Γ ` t :Sn Sn ≡ R

≡
Γ ` t :R

�

D.2 Proof of Lemma 5.3.5
Lemma 5.3.5 (Order characterisation). For any type R, unit types V1, . . . , Vm and scalars β1, . . . , βm,
if R v

∑m
j=1 βj .Vj , then there exist a scalar δ, a natural number k, a set N ⊆ {1, . . . ,m} and a unit type

W � Vk such that R ≡ δ.W +
∑
j∈N βj .Vj and

∑m
j=1 βj = δ +

∑
j∈N βj .

Proof. Structural induction on R.

• R ≡ U . Then by definition of v, ∃k / U � Vk and
∑m
j=1 βj = 1.

• R ≡ α.T . Then
∑m
j=1 βj .Vj ≡ α.

∑m
j=1 γj .Vj , so by the induction hypothesis T ≡ δ.W+

∑
j∈N γj .Vj

with N ⊆ {1, . . . ,m} andW � Vk for some k. So R ≡ α.T ≡ α.δ.W +α.
∑
j∈N γj .Vj ≡ (α×δ).W +∑

j∈N βj .Vj . Notice that (α× δ) +
∑
j∈N βj ≡ α.(δ +

∑
j∈N γj) = α.

∑m
j=1 γj ≡

∑m
j=1 βj .

• R ≡ T + S. Then ∃m′ ≤ m such that
∑m
j=1 βj .Vj ≡

∑m′

j=1 βj .Vj + S with T v
∑m′

j=1 βj .Vj , so by
the induction hypothesis T ≡ δ.W +

∑
j∈N βj .Vj with N ⊆ {1, . . . ,m′} and W � Vk for some k. So

R ≡ T +S ≡ δ.W +
∑
j∈N βj .Vj +S ≡ δ.W +

∑
j∈N ′ βj .Vj with N

′ = N ∪ {m′+ 1, . . . ,m}. Notice
that

∑m
j=1 βj =

∑m′

j=1 βj +
∑m
j=m′+1 βj = δ +

∑
j∈N βj +

∑m
j=m′+1 βj = δ +

∑
j∈N ′ βj .

�

D.3 Proof of Lemma 5.3.6
Lemma 5.3.6 (Scalars). For any context Γ, term t, type T and scalar α, if Γ ` α.t :T , then there exists
a type R such that T ≡ α.R and if α 6= 0, Γ ` t :R. Moreover, if Γ ` α.t :α.T , then Γ ` t :T .

123

Appendix D. Proofs from Chapter 5

Proof. Induction on the typing derivation to prove the first part of the Lemma.

• Let Γ ` α.t :α.T as a consequence of Γ ` t :T and rule sI . Trivial.

• Let Γ ` α.t :
∑n
i=1 αi.∀X.Ui with X /∈ FV (Γ) as a consequence of Γ ` α.t :

∑n
i=1 αi.Ui and rule

∀I . By the induction hypothesis, ∃R such that
∑n
i=1 αi.Ui ≡ α.R and if α 6= 0, Γ ` t :R. Then by

Lemma 5.2.2, R ≡
∑m
j=1 βj .Vj . So,

∑n
i=1 αi.Ui ≡

∑m
j=1 α×βj .Vj , then by Lemma 5.2.3[1], we have∑n

i=1 αi.∀X.Ui ≡
∑m
j=1 α × βj .∀X.Vj ≡ α.

∑m
j=1 βj .∀X.Vj . Also, if α 6= 0, since R ≡

∑m
j=1 βj .Vj ,

by rule ≡, we get Γ ` t :
∑m
j=1 βj .Vj , so using rule ∀I , we conclude with Γ ` t :

∑m
j=1 βj .∀X.Vj .

• Let Γ ` α.t :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` α.t :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then

by the induction hypothesis, ∃R such that
∑n
i=1 αi.∀X.Ui ≡ α.R and if α 6= 0, Γ ` t :R. Then

by Lemma 5.2.2, R ≡
∑m
j=1 βj .Vj . So,

∑n
i=1 αi.∀X.Ui ≡

∑m
j=1 α × βj .Vj , then by Lemma 5.2.3,

∀j, Vj ≡ ∀X.Wj and by Lemma 5.2.3[1],
∑n
i=1 αi.Ui ≡

∑m
j=1 α × βj .Wj . So by Lemma 5.2.3,∑n

i=1 αi.Ui[V/X] ≡ (
∑n
i=1 αi.Ui) [V/X] ≡

(∑m
j=1 α× βj .Wj

)
[V/X] ≡ α.

∑m
j=1 βj .Wj [V/X]. Also,

if α 6= 0, and since R ≡
∑m
j=1 βj .∀X.Wj , by rule ≡, we get Γ ` t :

∑m
j=1 βj .∀X.Wj , so using rule

∀E , we conclude with Γ ` t :
∑m
j=1 βj .Wj [V/X].

• Let Γ ` α.t : S as a consequence of Γ ` α.t : T with T ≡ S and rule ≡. Then by the induction
hypothesis, T ≡ α.R and if α 6= 0, Γ ` t :R. By transitivity of the equivalence, S ≡ α.R.

The second part of the Lemma, Γ ` α.t : α.T ⇒ Γ ` t : T follows as corollary. If Γ ` α.t : α.T , we
have just proved that there exists R such that α.T ≡ α.R and Γ ` t :R. It is easy to check that
α.T ≡ α.R⇒ T ≡ R, so using rule ≡, Γ ` t :T . �

D.4 Proof of Lemma 5.3.7

Lemma 5.3.7 (Zeros). For any context Γ, term t, unit types U1, . . . , Un and scalars α1, . . . αn, if
Γ ` 0.t :

∑n
i=1 αi.Ui, then Γ ` t :

∑n
i=1 δi.Ui and ∀i, αi = 0.

Proof. Induction on the typing derivation.

• Let Γ ` 0.u : 0.T as a consequence of Γ ` u : T and rule sI . Notice that T ≡
∑n
i=1 δi.Ui, so

0.T ≡
∑n
i=1 0.Ui which proves the case.

• Let Γ ` 0.u :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` 0.u :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then

by the induction hypothesis Γ ` u :
∑n
i=1 δi.∀X.Ui and ∀i, αi = 0, so by rule ∀E we conclude

Γ ` 0.u :
∑n
i=1 δi.Ui[V/X].

• Let Γ ` 0.u :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` 0.u :

∑n
i=1 αi.Ui and rule ∀I . Then by

the induction hypothesis Γ ` u :
∑n
i=1 δi.Ui and ∀i, αi = 0, so by rule ∀I we conclude Γ `

0.u :
∑n
i=1 δi.∀X.Ui.

�

D.5 Proof of Lemma 5.3.8

Lemma 5.3.8 (Basis terms). For any context Γ, type T and basis term b, if Γ ` b :T then there exists
a unit type U such that T ≡ U .

Proof. Induction on the typing derivation.

• Let Γ, x :U ` x :U as a consequence of rule ax. Trivial.

• Let Γ ` b :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` b :

∑n
i=1 αi.Ui and rule ∀I . Then by the

induction hypothesis ∃V such that
∑n
i=1 αi.Ui ≡ V ≡

∑1
j=1 1.V , and then by Lemma 5.2.3[1],∑n

i=1 αi.∀X.Ui ≡
∑1
j=1 1.∀X.V ≡ ∀X.V .

124

Appendix D. Proofs from Chapter 5

• Let Γ ` b :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` b :

∑n
i=1 αi.∀X.Ui and rule ∀I . Then by the

induction hypothesis ∃W such that
∑n
i=1 αi.∀X.Ui ≡ W ≡

∑1
j=1 1.W , then by Lemma 5.2.3,∑1

j=1 1.W ≡
∑1
j=1 1.∀X.W ′. Then by Lemma 5.2.3[1],

∑n
i=1 αi.Ui ≡

∑1
j=1 1.W ′. Thus by

Lemma 5.2.3,
∑n
i=1 αi.Ui[V/X] is equivalent to

∑1
j=1 1.W ′[V/X] ≡W ′[V/X].

• Let Γ ` b :R as a consequence of Γ ` b : T with T ≡ R and rule ≡. Then by the induction
hypothesis ∃U such that T ≡ U . So R ≡ T ≡ U .

�

D.6 Proof of Lemma 5.3.10

Lemma 5.3.10 (Substitution lemma). For any term t, basis term b, term variable x, context Γ, types
T , U , ~W and type variables ~X,

1. if Γ ` t :T , then Γ[U/X] ` t :T [U/X];

2. if Γ, x :U ` t :T , Γ ` b :U [~W/ ~X] and ~X /∈ FV (Γ), then Γ ` t[b/x] :T [~W/ ~X].

Proof.

1. Induction on the typing derivation.

• Let Γ, x : V ` x : V as a consequence of rule ax. By rule ax, one has Γ[U/X], x : V [U/X] `
x :V [U/X].

• Let Γ ` 0 : 0.T as a consequence of Γ ` t : T and rule 0I . Then by the induction hypoth-
esis Γ[U/X] ` t : T [U/X], so by rule 0I , Γ[U/X] ` 0 : 0.T [U/X]. Notice that 0.T [U/X] =
(0.T)[U/X].

• Let Γ ` (t) r :
∑n′

i=1

∑m
j=1 αi×βj .Ti[~Wj/ ~X] as a consequence of Γ ` t :

∑n′

i=1 αi.∀~Y .(V → Ti),
Γ ` r :

∑m
j=1 βj .Wj where ∀Wj ,∃~U ′j such that V [~U ′j/~Y] = Wj and rule →E . Then by the

induction hypothesis Γ[U/X] ` t : (
∑n′

i=1 αi.∀~Y .(V → Ti))[U/X] =
∑n′

i=1 αi.∀~Y .(V [U/X] →
Ti[U/X]) and Γ[U/X] ` r : (

∑m
j=1 βj .Wj)[U/X] =

∑m
j=1 βj .Wj [U/X] Notice that, up to vari-

able renaming, Wj [U/X] = (V [~U ′j/~Y])[U/X] = (V [U/X])[~U ′j/~Y] Then using rule →E ,
Γ[U/X] ` (t) r :

∑n′

i=1

∑m
j=1 αi × βj .(Ti[U/X])[~U ′j/~Y]. Notice that, up to variable renam-

ing, we can conclude the case by realising that
∑n′

i=1

∑m
j=1 αi × βj .(Ti[U/X])[~U ′j/~Y] is equal

to (
∑n′

i=1

∑m
j=1 αi × βj .Ti[~U ′j/~Y])[U/X].

• Let Γ ` λx.t :V → T as a consequence of Γ, x :V ` t :T and rule →I . Then by the induction
hypothesis Γ[U/X], x : V [U/X] ` t : T [U/X]. So using rule →I , Γ[U/X] ` λx.t : V [U/X] →
T [U/X]. Notice that V [U/X]→ T [U/X] = (V → T)[U/X].

• Let Γ ` t :
∑n
i=1 αi.Vi[W/Y] as a consequence of Γ ` t :

∑n
i=1 αi.∀Y.Vi and rule ∀E . Then

by the induction hypothesis one has that Γ[U/X] ` t : (
∑n
i=1 αi.∀Y.Vi)[U/X]. Notice that

(
∑n
i=1 αi.∀Y.Vi)[U/X] is equal to

∑n
i=1 αi.∀Y.Vi[U/X]. So by rule ∀E , we can derive the

following sequent Γ[U/X] ` t : (
∑n
i=1 αi.Vi[U/X])[W/Y]. Notice that, up to variable renaming

(
∑n
i=1 αi.Vi[U/X])[W/Y] = (

∑n
i=1 αi.Vi[W/Y])[U/X].

• Let Γ ` t :
∑n
i=1 αi.∀Y.Vi as a consequence of Γ ` t :

∑n
i=1 αi.Vi and rule ∀I . Then by the

induction hypothesis Γ[U/X] ` t :
∑n
i=1 αi.Vi[U/X]. So by rule ∀I , we can derive the sequent

Γ[U/X] ` t :
∑n
i=1 αi.∀Y.Vi[U/X] Notice that,

∑n
i=1 αi.∀Y.Vi[U/X] = (

∑n
i=1 αi.∀Y.Vi)[U/X].

• Let Γ ` t + r : T + R as a consequence of Γ ` t : T and Γ ` r :R with rule +I . Then by
the induction hypothesis Γ[U/X] ` t : T [U/X] and Γ[U/X] ` r :R[U/X]. So by rule +I ,
Γ[U/X] ` t + r :T [U/X] +R[U/X]. Notice that T [U/X] +R[U/X] = (T +R)[U/X].

• Let Γ ` α.t :α.T as a consequence of Γ ` t : T and rule sI . The by the induction hypothesis
Γ[U/X] ` t : T [U/X]. So by rule sI , Γ[U/X] ` α.t : α.T [U/X]. Notice that α.T [U/X] =
(α.T)[U/X].

125

Appendix D. Proofs from Chapter 5

• Let Γ ` t :R as a consequence of Γ ` t : T with T ≡ R, and rule ≡. Then by the induction
hypothesis Γ[U/X] ` t : T [U/X]. By Lemma 5.2.3 T ≡ R ⇒ T [U/X] ≡ R[U/X]. So by rule
≡, Γ[U/X] ` t :R[U/X]

2. Induction on the typing derivation of Γ, x :U ` t :T .

• Let Γ, x :U ` x :U as a consequence of rule ax. Trivial since x[b/x] = b.

• Let Γ, x :U ` 0 : 0.T as a consequence of Γ, x :U ` t : T and rule 0I . Then by the induction
hypothesis Γ ` t[b/x] :T [~W/ ~X]. Then by rule 0I , Γ ` 0 : 0.T [~W/ ~X]. Notice that 0 = 0[b/x]

and 0.T [~W/ ~X] = (0.T)[~W/ ~X].

• Let Γ, x :U ` (t) r :
∑n′

i=1

∑m
j=1 αi× βj .Ti[~Wj/~Y] as a consequence of Γ, x :U ` r :

∑m
j=1 βj .V

′
j

and Γ, x :U ` t :
∑n′

i=1 αi.∀~Y .(V → Ti) where ∀V ′j , ∃ ~Wj / V [~Wj/~Y] = V ′j by rule →E . Then

by the induction hypothesis Γ ` t[b/x] : (
∑n′

i=1 αi.∀~Y .(V → Ti))[~W/ ~X] which is equal to∑n′

i=1 αi.∀~Y .(V [~W/ ~X] → Ti[~W/ ~X]). Also we can derive Γ ` r[b/x] : (
∑m
j=1 βj .V

′
j)[~W/ ~X] =∑m

j=1 βj .V
′
j [~W/ ~X]. Notice also that, up to variable renaming, (V [~W/ ~X])[~W ′j/

~Y] is equal to

(V [~W ′j/
~Y])[~W/ ~X] = V ′j [~W/ ~X]. Then by rule →E , Γ ` (t[b/x]) r[b/x] :

∑n′

i=1

∑m
j=1 αi ×

βj .(Ti[~W/ ~X])[~W ′j/
~Y]. Notice that (t[b/x]) r[b/x] is equal to ((t) r)[b/x] and, up to variable

renaming,
∑n′

i=1

∑m
j=1 αi × βj .(Ti[~W/ ~X])[~W ′j/

~Y] = (
∑n′

i=1

∑m
j=1 αi × βj .Ti[~W ′j/~Y])[~W/ ~X].

• Let Γ, x :U ` λy.t : V → T as a consequence of Γ, x :U, y : V ` t : T and rule →I . Then by
item 1, Γ[~W/ ~X], x :U [~W/ ~X], y : V [~W/ ~X] ` t : T [~W/ ~X]. Since ~X /∈ FV (Γ), we do not need
to replace anything on Γ and then this sequent is the same to Γ, x :U [~W/ ~X], y : V [~W/ ~X] `
t : T [~W/ ~X]. Notice that y /∈ Γ, so Γ, y : V [~W/ ~X] ` b :U [~W/ ~X]. Let ~Z be set of fresh vari-
ables. Then U [~W/ ~X] = (U [~W/ ~X])[~W/~Z]. So, by the induction hypothesis Γ, y : V [~W/ ~X] `
t[b/x] : (T [~W/ ~X])[~W/~Z] = T [~W/ ~X]. So by rule →I , Γ ` λy.t[b/x] : V [~W/ ~X] → T [~W/ ~X].
Notice that λy.t[b/x] is equal to (λy.t)[b/x] and V [~W/ ~X]→ T [~W/ ~X] is just (V → T)[~W/ ~X].

• Let Γ, x :U ` t :
∑n
i=1 αi.Vi[W

′/Y] as a consequence of Γ, x :U ` t :
∑n
i=1 αi.∀Y.Vi and rule ∀E .

Then by the induction hypothesis Γ ` t[b/x] : (
∑n
i=1 αi.∀Y.Vi)[~W/ ~X] =

∑n
i=1 αi.∀Y.Vi[~W/ ~X].

So by rule ∀E , Γ ` t[b/x] : (
∑n
i=1 αi.Vi[

~W/ ~X])[W ′/Y]. Notice that, up to renaming of vari-
ables, the type (

∑n
i=1 αi.Vi[

~W/ ~X])[W ′/Y] is equal to (
∑n
i=1 αi.Vi[W

′/Y])[~W/ ~X].

• Let Γ, x : U ` t :
∑n
i=1 αi.∀Y.Vi as a consequence of Γ, x : U ` t :

∑n
i=1 αi.Vi and rule ∀I .

Then by the induction hypothesis we have Γ ` t[b/x] :
∑n
i=1 αi.Vi[

~W/ ~X]. So by rule ∀I ,
we can conclude Γ ` t[b/x] :

∑n
i=1 αi.∀Y.Vi[~W/ ~X]. Notice that

∑n
i=1 αi.∀Y.Vi[~W/ ~X] =

(
∑n
i=1 αi.∀Y.Vi)[~W/ ~X].

• Let Γ, x :U ` t + r : T + R as a consequence of Γ, x :U ` t : T and Γ, x :U ` r :R by rule +I .
Then by the induction hypothesis Γ ` t[b/x] : T [~W/ ~X] and Γ ` r[b/x] :R[~W/ ~X]. So by rule
+I , Γ ` t[b/x] + r[b/x] :T [~W/ ~X] +R[~W/ ~X]. Notice that t[b/x] + r[b/x] = (t + r)[b/x] and
T [~W/ ~X] +R[~W/ ~X] = (T +R)[~W/ ~X].

• Let Γ, x :U ` α.t : α.T as a consequence of Γ, x :U ` t : T and rule sI . Then by the induc-
tion hypothesis Γ ` t[b/x] : T [~W/ ~X]. So by rule sI , Γ ` α.t[b/x] : α.T [~W/ ~X]. Notice that
α.t[b/x] = (α.t)[b/x] and α.T [~W/ ~X] = (α.T)[~W/ ~X].

• Let Γ, x :U ` t :R as a consequence of Γ, x :U ` t : T where T ≡ R, and rule ≡. Then by
the induction hypothesis Γ ` t[b/x] :T [~W/ ~X]. By 5.2.3, T [~W/ ~X] ≡ R[~W/ ~X]. So by rule ≡,
Γ ` t[b/x] :R[~W/ ~X].

�

D.7 Proof of Lemma 5.3.11

Lemma 5.3.11 (Generation lemma (app)). For any terms t, r, any context Γ and any type T , if
Γ ` (t) r : T , then there exist natural numbers n,m, unit types U, V1, . . . , Vm, types T1, . . . , Tn and

126

Appendix D. Proofs from Chapter 5

scalars α1, . . . , αn and β1, . . . , βm, such that Γ ` t :
∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` r :

∑m
j=1 βj .Vj , where for

all Vj , there exists ~Wj such that U [~Wj/ ~X] = Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T .

Proof. Induction on the typing derivation.

• Let Γ ` (t) r :
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] as a consequence of Γ ` t :

∑n
i=1 αi.∀ ~X.(U → Ti) and

Γ ` r :
∑m
j=1 βj .Vj , where ∀Vj , ∃ ~Wj such that U [~Wj/ ~X] = Vj by rule →E . Trivial.

• Let Γ ` (t) r :S as a consequence of Γ ` (t) r :R where R ≡ S and rule ≡. The by the induction
hypothesis Γ ` t :

∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` r :

∑m
j=1 βj .Vj , ∀Vj , ∃ ~Wj such that U [~Wj/ ~X] = Vj

and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � R ≡ S.

• Let Γ ` (t) r :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` (t) r :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then by

the induction hypothesis Γ ` t :
∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` r :

∑m
j=1 βj .Vj , ∀Vj , ∃ ~Wj / U [~Wj/ ~X] =

Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] �

∑n
i=1 αi.∀X.Ui ≺

∑n
i=1 αi.Ui[V/X].

• Let Γ ` (t) r :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` (t) r :

∑n
i=1 αi.Ui and rule ∀I . Then by the

induction hypothesis Γ ` t :
∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` r :

∑m
j=1 βj .Vj , ∀Vj , ∃ ~Wj / U [~Wj/ ~X] = Vj

and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] �

∑n
i=1 αi.Ui ≺

∑n
i=1 αi.∀X.Ui.

�

D.8 Proof of Lemma 5.3.12
Lemma 5.3.12 (Generation lemma (abs)). For any term variable x, term t, context Γ and type T , if
Γ ` λx.t :R, there exist types U and T such that U → T � R and Γ, x :U ` t :T .

Proof. Induction on the typing derivation.

• Let Γ ` λx.t :U → T as a consequence of Γ, x :U ` t :T and rule →I . This is the trivial case.

• Let Γ ` λx.t :R as a consequence of Γ ` λx.t : S S ≡ R and rule ≡. Then by the induction
hypothesis U → T � S ≡ R and Γ, x :U ` t :T .

• Let Γ ` λx.t :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` λx.t :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then

by the induction hypothesis W → T �
∑n
i=1 αi.∀X.Ui ≺

∑n
i=1 αi.Ui[V/X] and Γ, x :W ` t :T .

• Let Γ ` λx.t :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` λx.t :

∑n
i=1 αi.Ui and rule ∀I . Then by the

induction hypothesis V → T �
∑n
i=1 αi.Ui ≺

∑n
i=1 αi.∀X.Ui and Γ, x :V ` t :T .

�

D.9 Proof of Lemma 5.3.13
Lemma 5.3.13 (Arrows comparison). For any types T,R and any unit types U, V , if V → R � U → T ,
then there exist ~W, ~X such that U → T ≡ (V → R)[~W/ ~X].

Proof. The proof is analogous to the proof of Lemma 3.2.6 (cf. Appendix B.2) and 4.2.3 (cf. Ap-
pendix C.1).

A map (·)◦ from types to types is defined by

X◦ = X (α.T)◦ = α.T ◦ (U → T)◦ = U → T (T +R)◦ = T ◦ +R◦ (∀X.U)◦ = U◦

We need two intermediate results.

1. For any type T and unit type U , there exists a unit type V such that (T [U/X])◦ ≡ T ◦[V/X]

2. For any types T , R, if T � R then ∃~U, ~X / R◦ ≡ T ◦[~U/ ~X]

Proofs

127

Appendix D. Proofs from Chapter 5

1. Structural induction on T .

• If T = X, then (X[U/X])◦ = U◦ = X[U◦/X] = X◦[U◦/X].

• If T = Y , then (Y [U/X])◦ = Y = Y ◦[U/X].

• If T = V → R, then ((V → R)[U/X])◦ = (V [U/X] → R[U/X])◦ = V [U/X] → R[U/X] =
(V → R)[U/X] = (V → R)◦[U/X].

• If T = ∀Y.R, then ((∀Y.R)[U/X])◦ = (∀Y.R[U/X])◦ = (R[U/X])◦, and by the induction
hypothesis (R[U/X])◦ ≡ R◦[V/X] = (∀Y.R)◦[V/X].

• If T = α.R, then (α.R[U/X])◦ = α.(R[U/X])◦, which, by the induction hypothesis, is equiva-
lent to α.(R◦)[V/X] = (α.R)◦[V/X].

• If T = R + S, then ((R + S)[U/X])◦ = (R[U/X] + S[U/X])◦ which is equal to (R[U/X])◦ +
(S[U/X])◦, which, by the induction hypothesis, is equivalent to R◦[U/X] + S◦[U/X] = (R◦ +
S◦)[U/X] = (R+ S)◦[U/X].

2. It suffices to show this just for T ≺ R. Cases:

• Let T =
∑n
i=1 αi.Ui and R =

∑n
i=1 αi.∀X.Ui. Then T ◦ = (

∑n
i=1 αi.Ui)

◦ which is equal to∑n
i=1 αi.U

◦
i =

∑n
i=1 αi.(∀X.Ui)◦ = (

∑n
i=1 αi.∀X.Ui)◦ which is just R◦.

• The other possible case is T =
∑n
i=1 αi.∀X.Ui and R =

∑i
i=1 αi.Ui[V/X], in such case R◦ =

(
∑n
i=1 αi.Ui[V/X])◦ =

∑n
i=1 αi.(Ui[V/X])◦. This latter type, by item 2, is equivalent to∑n

i=1 αi.U
◦
i [W/X] =

∑n
i=1 αi.(∀X.Ui)◦[W/X] = (

∑n
i=1 αi.∀X.Ui)◦[W/X] = T ◦[W/X].

Proof of the lemma: U → T = (U → T)◦ which by 2 is equivalent to (V → R)◦[~W/ ~X] = (V →
R)[~W/ ~X]. �

D.10 Proof of Corollary 5.3.14

Corollary 5.3.14 (of Lemma 5.3.12). For any context Γ, term variable x, term t, type variables ~X and
types U and T , if Γ ` λx.t :∀ ~X.(U → T) then the typing judgement Γ, x :U ` t :T is valid.

Proof. This result is proved in a completely analogous way to Corollaries 3.2.14 and 4.2.9. By Lemma
5.3.12, ∃V,R, V → R � ∀ ~X.(U → T) and Γ, x :V ` t :R. Note that V → R � ∀ ~X.(U → T) � U → T , so
by Lemma 5.3.13, ∃ ~W, ~Y such that U → T ≡ (V → R)[~W/~Y] ≡ V [~W/~Y] → R[~W/~Y] so U ≡ V [~W/~Y]

and T ≡ R[~W/~Y]. Also by Lemma 5.3.10, Γ[~W/~Y], x :V [~W/~Y] ` t :R[~W/~Y]. By Lemma 5.3.9 and rule
≡, Γ[~W/~Y], x :U ` t : T . If Γ[~W/~Y] ≡ Γ, then we are finished. In the other case, ~Y appears free in Γ.
Since V → R � U → T and Γ ` λx.t :V → R, according to Lemma 5.3.2, U → T can be obtained from
V → R as a type for λx.t; then we would need to use the rule ∀I ; thus ~Y cannot appear free in Γ, which
constitutes a contradiction. So, Γ, x :U ` t :T . �

D.11 Proof of Lemma 5.3.15

Lemma 5.3.15 (Generation lemma (linear combinations)). For any context Γ, scalar α, terms t and r
and types S and T :

1. if Γ ` t + r :S then there exist types R and R′ such that Γ ` t :R, Γ ` r :R′ and R+R′ � S;

2. if Γ ` α.t :T , then there exists a type R such that α.R � T and Γ ` α.t :α.R;

3. if Γ ` 0 :T , then there exists a type R such that T ≡ 0.R.

Proof.

1. Induction on the typing derivation.

• Let Γ ` t + r :T +R as a consequence of Γ ` t :T , Γ ` r :R and rule +I . Trivial case.

128

Appendix D. Proofs from Chapter 5

• Let Γ ` t + r : S as a consequence of Γ ` t + r : S′ where S′ ≡ S, and rule ≡. Then by the
induction hypothesis Γ ` t :T , Γ ` r :R and T +R � S′ ≡ S.

• Let Γ ` t + r :
∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` t + r :

∑n
i=1 αi.∀X.Ui and rule

∀E . Then by the induction hypothesis Γ ` t : T , Γ ` r :R and T + R �
∑n
i=1 αi.∀X.Ui ≺∑n

i=1 αi.Ui[V/X].
• Let Γ ` t+ r :

∑n
i=1 αi.∀X.Ui as a consequence of Γ ` t+ r :

∑n
i=1 αi.Ui and rule ∀I . Then by

the induction hypothesis Γ ` t :T , Γ ` r :R and T +R �
∑n
i=1 αi.Ui ≺

∑n
i=1 αi.∀X.Ui.

2. Induction on the typing derivation.

• Let Γ ` α.t :α.T as a consequence of Γ ` t :T and rule sI . Trivial case
• Let Γ ` α.t :T as a consequence of Γ ` α.t :S where S ≡ T , and rule ≡. Then by the induction

hypothesis Γ ` α.t :α.R with α.R � S ≡ T .
• Let Γ ` α.t :

∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` α.t :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then

by the induction hypothesis Γ ` α.t :α.R with α.R �
∑n
i=1 αi.∀X.Ui ≺

∑n
i=1 αi.Ui[V/X].

• Let Γ ` α.t :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` α.t :

∑n
i=1 αi.Ui and rule ∀I . The by the

induction hypothesis Γ ` α.t :α.R with α.R �
∑n
i=1 αi.Ui ≺

∑n
i=1 αi.∀X.Ui.

3. Induction on the typing derivation.

• Let Γ ` 0 : 0.T as a consequence of Γ ` t :T and rule 0I . Trivial case.
• Let Γ ` 0 : T as a consequence of Γ ` 0 :S where S ≡ T , and rule ≡. Then by the induction

hypothesis 0.R ≡ S ≡ T .
• Let Γ ` 0 :

∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` 0 :

∑n
i=1 αi.∀X.Ui and rule ∀E . Then

by the induction hypothesis
∑n
i=1 αi.∀X.Ui ≡ 0.R. By Lemma 5.2.2, R ≡

∑m
j=1 βj .Vj and so

0.R ≡
∑m
j=1 0.Vj . Thus by Lemma 5.2.3, ∀Vj ,∃Wj / Vj ≡ ∀X.Wj . Then by Lemma 5.2.3,∑n

i=1 αi.Ui ≡
∑m
j=1 0.Wj and by Lemma 5.2.3,

∑n
i=1 αi.Ui[V/X] = (

∑n
i=1 αi.Ui)[V/X] which

is equivalent to (
∑m
j=1 0.Wj)[V/X] = 0.

∑m
j=1Wj [V/X].

• Let Γ ` 0 :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` 0 :

∑n
i=1 αi.Ui and rule ∀I . Then by the

induction hypothesis
∑n
i=1 αi.Ui ≡ 0.R. By Lemma 5.2.2 R ≡

∑m
j=1 βj .Vj so 0.R ≡

∑m
j=1 0.Vj .

Then by Lemma 5.2.3,
∑n
i=1 αi.∀X.Ui ≡ 0.

∑m
j=1 ∀X.Wj .

�

D.12 Proof of Theorem 5.3.4
Theorem 5.3.4 (Weak subject reduction). For any terms t, t′, any context Γ and any type T , if t→R t′

and Γ ` t :T , then

• If R /∈ Factorisation rules, then Γ ` t′ :T .

• If R ∈ Factorisation rules, then ∃S v T such that Γ ` t′ :S and Γ ` t :S.

Proof. Let t→R t′ and Γ ` t :T . We proceed by induction. We treat separately every rule R.

Elementary rules

rule 0.t→ 0. Let Γ ` 0.t :T . Then by Lemma 5.3.15, ∃R / 0.R � T and Γ ` 0.t : 0.R, then by rule
0I , Γ ` 0 : 0.(0.R). Since 0.(0.R) ≡ 0.R � T , by Lemma 5.3.2, Γ ` 0 :T .

rule 1.t→ t. Let Γ ` 1.t : T , then by Lemma 5.3.15, ∃R / 1.R � T and Γ ` 1.t : 1.R. Then by
Lemma 5.3.6, Γ ` t :R and by ≡-rule, Γ ` t : 1.R, so by Lemma 5.3.2 Γ ` t :T .

rule α.0→ 0. Let Γ ` α.0 :T , then by Lemma 5.3.15, ∃R / α.R � T and Γ ` α.0 :α.R. Cases:
• If α 6= 0, then by Lemma 5.3.6, Γ ` 0 :R, and, by Lemma 5.3.15, ∃S / R ≡ 0.S. Notice

that 0.S = α× 0.S ≡ α.(0.S) ≡ α.R � T , so by Lemma 5.3.2, Γ ` 0 :T .
• If α = 0, then by rule 0I , Γ ` 0 : 0.(0.R), and notice that 0.(0.R) ≡ 0.R. Then by

Lemma 5.3.2, Γ ` 0 :T .

129

Appendix D. Proofs from Chapter 5

rule α.(β.t)→ (α× β).t. Let Γ ` α.(β.t) :T . Then by Lemma 5.3.15, ∃R such that α.R � T and
Γ ` α.(β.t) :α.R Cases:

• If α 6= 0, then by Lemma 5.3.6, Γ ` β.t :R. Then by Lemma 5.3.15 again, ∃S / β.S � R
and Γ ` β.t :β.S. If β = 0, then (α×β).t = β.t and 0.S ≡ (α×0).S ≡ α.(0.S) � α.R � T
so by Lemma 5.3.2, Γ ` β.t :T . If β 6= 0, then by Lemma 5.3.6, Γ ` t :S, then by rule sI ,
Γ ` (α× β).t : (α× β).S.
Note that (α× β).S ≡ α.(β.S) � α.R � T , so by Lemma 5.3.2, Γ ` (α× β).t :T .

• If α = 0, first we prove that Γ ` 0.β.t :T ⇒ Γ ` 0.t :T . We proceed by induction on the
typing derivation.
– Let Γ ` 0.β.t : 0.T as a consequence of Γ ` β.t :T and rule sI . Then by Lemma 5.3.15,

there exists a type R such that β.R � T and Γ ` β.t :β.R. Cases:
∗ If β 6= 0, then by Lemma 5.3.6 Γ ` t :R so by rule sI we get Γ ` 0.t : 0.R. Notice

that 0.R = (0× β).R ≡ 0.β.R � 0.T , so by Lemma 5.3.2, Γ ` 0.t : 0.T .
∗ If β = 0, then Γ ` 0.t : 0.R. Notice that 0.R = (0 × 0).R ≡ 0.(0.R) � 0.T , so by

Lemma 5.3.2, Γ ` 0.t : 0.T .
– Let Γ ` 0.β.t :T as a consequence of Γ ` 0.β.t :R where R ≡ T and rule ≡. Then by

the induction hypothesis Γ ` 0.t :R, so by rule ≡, Γ ` 0.t :T .
– Let Γ ` 0.β.t :

∑n
i=1 αi.Ui[V/X] as a consequence of Γ ` 0.β.t :

∑n
i=1 αi.∀X.Ui and

rule ∀E . Then by the induction hypothesis Γ ` 0.t :
∑n
i=1 αi.∀X.Ui. So by rule ∀E ,

Γ ` 0.t :
∑n
i=1 αi.Ui[V/X].

– Let Γ ` 0.β.t :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` 0.β.t :

∑n
i=1 αi.Ui and rule ∀I .

Then by the induction hypothesis Γ ` 0.t :U . So by rule ∀I , Γ ` 0.t :
∑n
i=1 αi.∀X.Ui

With this result we can deduce that Γ ` 0.t : 0.R. Notice that 0.t = (0 × β).t, so by
Lemma 5.3.2, Γ ` (0× β).t :T .

rule α.(t + r)→ α.t + α.r. Let Γ ` α.(t + r) :T . Then by Lemma 5.3.15, ∃R such that α.R � T
and Γ ` α.(t + r) :α.R. Cases:

• If α 6= 0, then by Lemma 5.3.6, Γ ` t + r :R. So by Lemma 5.3.15, ∃S1, S2 such that
Γ ` t :S1, Γ ` r :S2 and S1+S2 � R. Then by rule sI , Γ ` α.t :α.S1 and Γ ` α.r :α.S2, and
so by rule +I , Γ ` α.t+α.r :α.S1+α.S2. Notice that α.S1+α.S2 ≡ α.(S1+S2) � α.R � T ,
so by Lemma 5.3.2, Γ ` α.t + α.r :T .

• If α = 0, then Γ ` 0.(t+r) : 0.R. We show by induction the most general case: Γ ` 0.(t+r)
implies S ⇒ Γ ` 0.t + 0.r :S. Then since 0.R � T , by Lemma 5.3.2, Γ ` 0.t + 0.r :T .
– Let Γ ` 0.(t + r) : 0.R as a consequence of Γ ` t + r :R and rule sI . Then by

Lemma 5.3.15, ∃T, S such that Γ ` t : T , Γ ` r : S and T + S � R. So by rule
sI , Γ ` 0.t : 0.T and Γ ` 0.r : 0.S and so by rule +I , Γ ` 0.t + 0.r : 0.T + 0.S. Notice
that 0.T + 0.S ≡ 0.(T + S) � 0.R, so by Lemma 5.3.2, Γ ` 0.t + 0.r : 0.R.

– Let Γ ` 0.(t + r) :S as a consequence of Γ ` 0.(t + r) :R R ≡ S and rule ≡. Then
by the induction hypothesis Γ ` 0.t + 0.r :R. So by rule ≡, Γ ` 0.t + 0.r :S.

– Let Γ ` 0.(t + r) :
∑n
i=1 αi.Ui[V/X] as a consequence of rule ∀E and the sequent Γ `

0.(t + r) :
∑n
i=1 αi.∀X.Ui. By the induction hypothesis Γ ` 0.t + 0.r :

∑n
i=1 αi.∀X.Ui.

So by rule ∀E , Γ ` 0.t + 0.r :
∑n
i=1 αi.Ui[V/X].

– Let Γ ` 0.(t + r) :
∑n
i=1 αi.∀X.Ui as a consequence of Γ ` 0.(t + r) :

∑n
i=1 αi.Ui and

rule ∀I . Then by the induction hypothesis Γ ` 0.t + 0.r :
∑n
i=1 αi.Ui. So by rule ∀I ,

Γ ` 0.t + 0.r :
∑n
i=1 αi.∀X.Ui.

Factorisation rules

rule α.t + β.t→ (α+ β).t. Let Γ ` α.t + β.t : T . Then by Lemma 5.3.15, ∃R,S such that Γ `
α.t :R, Γ ` β.t :S and R+S � T . Then by Lemma 5.3.15, ∃R′ / α.R′ � R and Γ ` α.t :α.R′,
also ∃S′ / β.S′ � S and Γ ` β.t :β.S′. Cases:

• If α 6= 0 (or analogously β 6= 0), then by Lemma 5.3.6, Γ ` t :R′ and so by sI we conclude
Γ ` (α+ β).t : (α+ β).R′. Notice that (α+ β).R′ v α.R′ + β.S′ v R+ S v T . Also using
rules +I and ≡ we conclude Γ ` α.t + β.t : (α+ β).R′.

130

Appendix D. Proofs from Chapter 5

• If α = β = 0, then notice that Γ ` 0.t : 0.R′ and 0.R′ v 0.R′ + 0.S′ v R + S v T . Also,
using rules +I and ≡, we conclude Γ ` 0.t + 0.t : 0.R′.

rules α.t + t→ (α+ 1).t and t + t→ (1 + 1).t. This cases are analogous to the previous case.
rule t + 0→ t. Let Γ ` t+0 :T . Then by Lemma 5.3.15, ∃R,S such that Γ ` t :R, Γ ` 0 :S and

R+ S � T . So, by Lemma 5.3.15, ∃S′ / S ≡ 0.S′. Notice that R v R+ 0.S′ ≡ R+ S v T .

Application rules

rule (t + r) u→ (t) u + (r) u. Let Γ ` (t+r) u :T . Then by Lemma 5.3.11, ∃n, m, U , T1,. . . ,Tn,
α1,. . . ,αn, β1,. . . ,βm, V1,. . . ,Vm such that Γ ` t+r :

∑n
i=1 αi.∀ ~X.(U → Ti), Γ ` u :

∑m
j=1 βj .Vj ,

∀Vj , ∃ ~Wj / U [~Wj/ ~X] = Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . Then by Lemma 5.3.15,

∃R,S such that Γ ` t :R, Γ ` r :S and R + S which is � than
∑n
i=1 αi.∀ ~X.(U → Ti). Then

∃N1, N2 ⊆ {1, . . . , n} such that R �
∑
i∈N1\N2

αi.∀ ~X.(U → Ti) +
∑
i∈N1∩N2

δi.∀ ~X.(U → Ti),
S �

∑
i∈N2\N1

αi.∀ ~X.(U → Ti) +
∑
i∈N1∩N2

γi.∀ ~X.(U → Ti) and ∀i ∈ N1 ∩N2, δi + γi = αi.
Then by Lemma 5.3.2,Γ ` t :

∑
i∈N1\N2

αi.∀ ~X.(U → Ti) +
∑
i∈N1∩N2

δi.∀ ~X.(U → Ti) and
Γ ` r :

∑
i∈N2\N1

αi.∀ ~X.(U → Ti) +
∑
i∈N1∩N2

γi.∀ ~X.(U → Ti). Then by rule →E , Γ `
(t) u :

∑
i∈N1\N2

∑m
j=1 αi×βj .Ti[~Wj/ ~X]+

∑
i∈N1∩N2

∑m
j=1 δi×βj .Ti[~Wj/ ~X], and analogously,

Γ ` (r) u :
∑
i∈N2\N1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] +

∑
i∈N1∩N2

∑m
j=1 γi × βj .Ti[~Wj/ ~X]. So using

+I , Γ ` (t) u + (r) u :
∑
i∈N1∪N2\N1∩N2

∑m
j=1 αi × βj .Ti[~Wj/ ~X] +

∑
i∈N1∩N2

∑m
j=1(δi + γi)×

βj .Ti[~Wj/ ~X] ≡
∑n
i=1

∑m
j=1 αi×βj .Ti[~Wj/ ~X] � T . Then by Lemma 5.3.2, Γ ` (t) u+(r) u :T .

rule (u) (t + r)→ (u) t + (u) r. Let Γ ` (u) (t + r) : T . By Lemma 5.3.11, ∃n, m, U , Ti, αi, βj
and Vj , with i = 1, . . . , n and j = 1, . . . , n, such that Γ ` u :

∑n
i=1 αi.∀ ~X.(U → Ti) is valid and

also Γ ` t+r :
∑m
j=1 βj .Vj is valid, and ∀Vj , ∃ ~Wj such that U [~Wj/ ~X] ≡ Vj and

∑n
i=1

∑m
j=1 αi×

βj .Ti[~Wj/ ~X] � T . Then by Lemma 5.3.15, ∃R,S such that Γ ` t :R, Γ ` r :S and R + S �∑m
j=1 βj .Vj . Then, ∃N1, N2 ⊆ {1, . . . , n} / R �

∑
j∈N1\N2

βj .Vj +
∑
j∈N1∩N2

δj .Vj , S �∑
j∈N2\N1

βj .Vj +
∑
j∈N1∩N2

γj .Vj and ∀j ∈ N1 ∩N2, δj + γj = βj . So by Lemma 5.3.2, Γ `
t :
∑
j∈N1\N2

βj .Vj +
∑
j∈N1∩N2

δj .Vj and Γ ` r :
∑
j∈N2\N1

βj .Vj +
∑
j∈N1∩N2

γj .Vj . Then by
rule→E , we have Γ ` (u) t :

∑n
i=1

∑
j∈N1\N2

αi×βj .Ti[~Wj/ ~X]+
∑n
i=1

∑
j∈

N1∩N2

αi×δj .Ti[~Wj/ ~X]

and Γ ` (u) r :
∑n
i=1

∑
j∈N2\N1

αi × βj .Ti[~Wj/ ~X] +
∑n
i=1

∑
j∈

N1∩N2

αi × γj .Ti[~Wj/ ~X]. So with

+I , Γ ` (u) t + (u) r :
∑n
i=1

∑
j∈N1∪N2\N1∩N2

αi × βj .Ti[~Wj/ ~X] +
∑n
i=1

∑
j∈N1∩N2

αi × (δj +

γj).Ti[~Wj/ ~X] ≡
∑n
i=1

∑m
j=1 αi×βj .Ti[~Wj/ ~X] � T . Then by Lemma 5.3.2, Γ ` (u) t+(u) r :T .

rule (α.t) r→ α.(t) r. Let Γ ` (α.t) r :T . Then by Lemma 5.3.11, ∃n, m, U , Ti,αi,βj and Vj with
i = 1 . . . n and j = 1 . . .m such that Γ ` α.t :

∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` r :

∑m
j=1 βj .Vj

with
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T where ∀Vj , ~Wj is such that U [~Wj/ ~X] ≡ Vj . Cases:

• If α 6= 0, by Lemma 5.3.15, ∃R such that α.R �
∑n
i=1 αi.∀ ~X.(U → Ti) and Γ `

α.t : α.R, then by Lemma 5.3.6, Γ ` t :R. Notice also that R �
∑n
i=1 δi.∀ ~X.(U → Ti)

where ∀i, δi × α = αi. Then by Lemma 5.3.2, Γ ` t :
∑n
i=1 δi.∀ ~X.(U → Ti), so us-

ing →E , we get Γ ` (t) r :
∑n
i=1

∑m
j=1 δi × βj .Ti[~Wj/ ~X] and so with sI we conclude

Γ ` α.(t) r :α.
∑n
i=1

∑m
j=1 δi × βj .Ti[~Wj/ ~X]. Notice that α.

∑n
i=1

∑m
j=1 δi × βj .Ti[~Wj/ ~X]

is equivalent to
∑n
i=1

∑m
j=1 α × δi × βj .Ti[Wj/X] ≡

∑n
i=1

∑m
j=1 αi × βj .Ti[Wj/X] � T .

Then by Lemma 5.3.2, Γ ` α.(t) r :T .
• If α = 0, then by Lemma 5.3.7 we have Γ ` t :

∑n
i=1 δi.∀ ~X.(U → Ti) and ∀i, αi =

0, so with →E followed by sI we conclude Γ ` 0.(t) r : 0.
∑n
i=1

∑m
j=1 δi × βj .Ti[~Wj/ ~X]

Notice that 0.
∑n
i=1

∑m
j=1 δi × βj .Ti[~Wj/ ~X] ≡

∑n
i=1

∑m
j=1 αi × βj .Ti[Wj/X] � T , so by

Lemma 5.3.2, Γ ` 0.(t) r :T .
rule (t) α.r→ α.(t) r. Let Γ ` (t) α.r :T . Then by Lemma 5.3.11, ∃n, m, U , Ti,αi,βj and Vj with

i = 1 . . . n and j = 1 . . .m such that Γ ` t :
∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` α.r :

∑m
j=1 βj .Vj

with
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T where ∀Vj , ~Wj is such that U [~Wj/ ~X] ≡ Vj . Cases:

131

Appendix D. Proofs from Chapter 5

• If α 6= 0, then by Lemma 5.3.15, ∃R / α.R �
∑m
j=1 βj .Vj and Γ ` α.r : α.R, then by

Lemma 5.3.6, Γ ` r :R. Notice also that R �
∑m
j=1 δj .Vj where ∀j, δj × α = βj .

Then by Lemma 5.3.2, Γ ` r :
∑m
j=1 δj .Vj , so using rule →E , followed by sI we get Γ `

α.(t) r :α.
∑n
i=1

∑m
j=1 αi × δj .Ti[~Wj/ ~X1. Notice that α.

∑n
i=1

∑m
j=1 αi × δj .Ti[~Wj/ ~X] ≡∑n

i=1

∑m
j=1 αi ×α× δj .Ti[~Wj/ ~X] ≡

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . By Lemma 5.3.2,

Γ ` α.(t) r :T .
• If α = 0, then by Lemma 5.3.7 we have Γ ` r :

∑m
j=1 δj .Vj and ∀j, βj = 0, so using

rule →E followed by rule sI , we conclude Γ ` 0.(t) r : 0.
∑n
i=1

∑m
j=1 αi × δj .Ti[~Wj/ ~X].

Notice that 0.
∑n
i=1

∑m
j=1 αi × δj .Ti[~Wj/ ~X] ≡

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . Then

by Lemma 5.3.2, Γ ` α.(t) r :T .

rule (0) t→ 0. Let Γ ` (0) t :T . Then by Lemma 5.3.11, ∃n,m, U , Ti,αi and βj with i = 1 . . . n

and j = 1 . . .m such that Γ ` 0 :
∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` t :

∑m
j=1 βj .Vj , where

∀Vj , ∃ ~Wj / U [~Wj/ ~X] ≡ Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . By Lemma 5.3.15,

∃R /
∑n
i=1 αi.∀ ~X.(U → Ti) ≡ 0.R, then it is equivalent to

∑n′

i=1 0.∀ ~X.(U → Ti) with
n′ ≤ n, that is ∃N1, . . . , Nn′ ⊆ {1, . . . , n} disjoint sets, such that ∀k, ∀i, j ∈ Nk, Ti = Tj

and
∑
i∈Nk αi = 0. Then by rule →E , Γ ` (0) t :

∑n′

i=1

∑m
j=1 0 × βj .Ti[~Wj/ ~X] and so by

0I , Γ ` 0 : 0.
∑n′

i=1

∑m
j=1 0 × βj .Ti[~Wj/ ~X]. Notice that 0.

∑n′

i=1

∑m
j=1 0 × βj .Ti[~Wj/ ~X] ≡∑n′

i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T , then by Lemma 5.3.2, Γ ` 0 :T .

rule (t) 0→ 0. Let Γ ` (t) 0 : T . Then by Lemma 5.3.11, ∃n,m, U , Ti,αi and βj with i =

1 . . . n and j = 1 . . .m such that Γ ` t :
∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` 0 :

∑m
j=1 βj .Vj where

∀Vj , ∃ ~Wj / U [~Wj/ ~X] ≡ Vj and
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . By Lemma 5.3.15,

∃R /
∑m
j=1 βj .Vj ≡ 0.R, so it is equivalent to

∑m′

j=1 0.Vj with m′ ≤ n, i.e. ∃M1, . . . ,Mm′ ⊆
{1, . . . ,m} disjoint sets, such that ∀k, ∀i, j ∈Mk, Vi = Vj and

∑
j∈Mk

βj = 0. Then using rule

→E we get Γ ` (t) 0 :
∑n
i=1

∑m′

j=1 αi × 0.Ti[~Wj/ ~X] and by rule 0I , Γ ` 0 : 0.
∑n
i=1

∑m′

j=1 αi ×
0.Ti[~Wj/ ~X]. Notice that 0.

∑n
i=1

∑m′

j=1 αi× 0.Ti[~Wj/ ~X] ≡
∑n
i=1

∑m
j=1 αi× βj .Ti[~Wj/ ~X] � T ,

then by Lemma 5.3.2, Γ ` 0 :T .

Beta reduction

rule (λx.t) b→ t[b/x]. Let Γ ` (λx.t) b : T . Then by Lemma 5.3.11, there exist numbers n,m,
scalars α1, . . . , αn, β1, . . . , βm, a unit type U , and general types T1, . . . , Tn such that the fol-
lowing sequents can be derived: Γ ` λx.t :

∑n
i=1 αi.∀ ~X.(U → Ti) and Γ ` b :

∑m
j=1 βj .Vj

with
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T , where ∀Vj , ~Wj is such that U [~Wj/ ~X] ≡ Vj . By

Lemma 5.3.8,
∑n
i=1 αi.∀ ~X.(U → Ti) ≡ ∀ ~X.(U → Ti) and ∀i, k, Ti = Tk, analogously∑m

j=1 βj .Vj ≡ Vj where ∀j, h, Vj = Vh. So
∑n
i=1 αi = 1 and

∑m
j=1 βi = 1. Then by rule ≡,

Γ ` λx.t : ∀ ~X.(U → Ti), and Γ ` b :Vi. Thus, by Corollary 5.3.14, Γ, x :U ` t :Ti. Notice that
Vi ≡ U [~Wi/ ~X], then, by Lemma 5.3.10[2], we have Γ ` t[b/x] : Ti[~Wi/ ~X]. Since Ti[~Wj/ ~X] ≡
(1 × 1).Ti[~Wj/ ~X] = (

∑n
i=1 αi) × (

∑m
j=1 βj).Ti[

~Wj/ ~X] = (
∑n
i=1

∑m
j=1 αi × βj).Ti[~Wj/ ~X],

and as all the Ti are equivalents between them, this type is equivalent to
∑n
i=1

∑m
j=1 αi ×

βj .Ti[~Wj/ ~X] � T . By Lemma 5.3.2, Γ ` t[b/x] :T .

AC equivalences

rule t + r = r + t. Let Γ ` t + r : T . Then by Lemma 5.3.15 ∃R,S / R + S � T , Γ ` t :R and
Γ ` r :S. So using +I , Γ ` r + t :S +R. Note that S +R ≡ R+ S � T , then by Lemma 5.3.2
Γ ` r + t :T .

rule (t + r) + u = t + (r + u). Let Γ ` (t + r) + u : T . Then by Lemma 5.3.15 ∃R,S such that
Γ ` t+r :R, Γ ` u :S and R+S � T . Then, by Lemma 5.3.15 again, ∃R′, S′ such that Γ ` t :R′,
Γ ` r :S′ and R′+S′ � R. So using +I in the correct order, we get Γ ` t+(r+u) :R′+(S′+S).
Note that R′+ (S′+S) ≡ (R′+S′) +S � R+S � T , then by Lemma 5.3.2 Γ ` t+ (r+u) :T .

132

Appendix D. Proofs from Chapter 5

Contextual rules

• Let α.s→ α.t as a consequence of s→ t. Let Γ ` α.s :T , then by Lemma 5.3.15 ∃R / α.R � T
and Γ ` α.s : α.R. Cases: If α 6= 0, then by Lemma 5.3.6, Γ ` s :R, so by the induction
hypothesis Γ ` t :R′ with R′ v R, then using sI , Γ ` α.t :α.R′. Notice that α.R′ v α.R v T .
If α = 0, then notice that T ≡

∑n
i=1 βi.Ui, so by Lemma 5.3.7, Γ ` s :

∑n
i=1 δi.Ui and

∀i, βi = 0. Then by the induction hypothesis Γ ` t :R with R v
∑n
i=1 δi.Ui. So using sI ,

Γ ` 0.t : 0.R. Notice that 0.R v 0.
∑n
i=1 δi.Ui ≡

∑n
i=1 0.Ui ≡ T .

• Let r + s→ r + t as a consequence of s→ t. Let Γ ` r + s :T , then by Lemma 5.3.15, ∃R,S
such that Γ ` r :R, Γ ` s :S and R+ S � T . Then by the induction hypothesis Γ ` t :S′ v S,
so using +I we can conclude Γ ` r + t :R+ S′. Notice that R+ S′ v R+ S � T .

• Let (r) s→ (r) t as a consequence of s→ t. Let Γ ` (r) s :T , Then by Lemma 5.3.11, ∃n, n, o ≥
1, U, T1, . . . , Tn, α1, . . . , αn, β1, . . . , βm, V1, . . . , Vm such that Γ ` r :

∑n
i=1 αi.∀ ~X.(U → Ti)

and Γ ` s :
∑m
j=1 βj .Vj where for all Vj , there exists ~Wj such that U [~Wj/ ~X] ≡ Vj and∑n

i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . Cases:

– If s→R t withR /∈ factorisation rules, then by the induction hypothesis Γ ` t :
∑m
j=1 βj .Vj ,

so using rule →E we obtain Γ ` (r) t :
∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X]. By Lemma 5.3.2,

Γ ` (r) t :T .
– If s →R t with R ∈ factorisation rules, then by the induction hypothesis Γ ` t :R

with R v
∑m
j=1 βj .Vj . By Lemma 5.3.5, ∃δ, k,N ⊆ {1 . . . ,m},W � Vk such that

R ≡ δ.W+
∑
j∈N βj .Vj . Notice that since we have obtained t from s by applying one of the

factorisation rules, we can safely take W ≡ Vk. Then notice that
∑n
i=1 αi× δ.Ti[~Wj/ ~X] +∑n

i=1

∑
j∈N αi × βj .Ti[~Wj/ ~X] v

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T .

• Let (s) r→ (t) r as a consequence of s→ t. Let Γ ` (s) r :T , Then by Lemma 5.3.11, ∃n, n, o ≥
1, U, T1, . . . , Tn, α1, . . . , αn, β1, . . . , βm, V1, . . . , Vm such that Γ ` s :

∑n
i=1 αi.∀ ~X.(U → Ti)

and Γ ` r :
∑m
j=1 βj .Vj where for all Vj , there exists ~Wj such that U [~Wj/ ~X] ≡ Vj and∑n

i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T . Cases:

– If s →R t with R not a factorisation rule, then by the induction hypothesis one has
Γ ` t :

∑n
i=1 αi.∀ ~X.(U → Ti), so using rule →E , Γ ` (t) r :

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X].

Then by Lemma 5.3.2, Γ ` (t) r :T .
– If s →R t with R ∈ factorisation rules, then by the induction hypothesis Γ ` t :R where
R v

∑n
i=1 αi.∀ ~X.(U → Ti). By Lemma 5.3.5, ∃δ, k,N ⊆ {1, . . . , n},W � ∀ ~X.(U → Tk)

such that R ≡ δ.W +
∑
i∈N αi.∀ ~X.(U → Ti). Notice that since we have obtained t from

s by applying one of the factorisation rules, we can safely take W ≡ ∀ ~X.(U → Tk). Then
using rule →E , Γ ` (t) r :

∑m
j=1 δ × βj .Tk[~Wj/ ~X]. Notice that

∑m
j=1 δ × βj .Tk[~Wj/ ~X] +∑

i∈N
∑m
j=1 αi × βj .Ti[~Wj/ ~X] v

∑n
i=1

∑m
j=1 αi × βj .Ti[~Wj/ ~X] � T .

• Let λx.s→ λx.t as a consequence of s→ t. Let Γ ` λx.s :T . By Lemma 5.3.12, ∃U,R such that
U → R � T and Γ, x :U ` s :R. Then by the induction hypothesis Γ, x :U ` t :S, with S v R.
So using rule →I , Γ ` λx.t :U → S. Notice that since S v R, then U → S v U → R v T .

�

D.13 Proof of Lemma 5.4.1
We need an intermediate result first, showing that the linear combination of strongly normalising terms,
is strong normalising.

Lemma D.13.1. If {ti}i are strongly normalising, then so is any linear combination of term made of
the ti

Proof. Let ~t = t1, . . . , tn. We define the algebraic context F (·) by the following grammar:

F (~t) ::= ti |F (~t) + F (~t) |α · F (~t) |0.

133

Appendix D. Proofs from Chapter 5

We claim that for all algebraic contexts F (·) and all strongly normalising terms ti that are not linear
combinations (that is, of the form x, λx.r or (s) r), the term F (~t) is also strongly normalising.

The claim is proven by induction on s(~t), the sum over i of the sum of the lengths of all the possible
rewrite sequences starting with ti.

• If s(~t) = 0. Then none of the ti reduces. We define an algebraic measure a(·) inductively as follows:
a(ti) = 1, a(F (~t) + F (~t′)) = 2 + a(F (~t)) + a(F (~t′)), a(α · F (~t)) = 1 + 2.a(F (~t)), a(0) = 0. It is
now possible to show by induction on a(F (~t)) that F (~t) is SN.

– If a(F (~t)) = 0, then F (~t) = 0 which is SN.

– Suppose it is true for all F (~t) of algebraic measure less or equal to m, and consider F (~t) such
that a(F (~t)) = m+ 1. Since the ti are not linear combinations and they are in normal form,
F (~t) can only reduce with a rule from Group E or a rule from group F. We show that those
reductions are strictly decreasing on the algebraic measure, by a rule by rule analysis, and so,
we can conclude by induction hypothesis.

∗ 0.F (~t)→ 0. Note that a(0.F (~t)) = 1 ≥ 0 = a(0).
∗ 1.F (~t)→ F (~t). Note that a(1.F (~t)) = 1 + 2.a(F (~t)) ≥ a(F (~t)).
∗ α.0→ 0. Note that a(α.0) = 1 ≥ 0 = a(0).
∗ α.(β.F (~t)) → (α × β).F (~t). Note that a(α.(β.F (~t))) = 1 + 2.(1 + 2.a(F (~t))) ≥ 1 +

2.a(F (~t)) = a((α× β).F (~t)).
∗ α.(F (~t) + F (~t′)) → α.F (~t) + α.F (~t′). Note that a(α.(F (~t) + F (~t′))) = 5 + 2.a(F (~t)) +

2.a(F (~t′)) > 4 + 2.a(F (~t)) + 2.a(F (~t′)) = a(α.F (~t) + α.F (~t′)).
∗ α.F (~t) + β.F (~t) → (α + β).F (~t). Note that a(α.F (~t) + β.F (~t)) = 4 + 4.a(F (~t)) ≥

1 + 2.a(F (~t)) = a((α+ β).F (~t)).
∗ α.F (~t)+F (~t)→ (α+1).F (~t). Note that a(α.F (~t)+F (~t)) = 3+3.a(F (~t)) ≥ 1+2.a(F (~t)) =
a.((α+ 1).F (~t)).

∗ F (~t) +F (~t)→ (1 + 1).F (~t). Note that a.(F (~t) +F (~t)) = 2 + 2.a(F (~t)) ≥ 1 + 2.a(F (~t)) =
a.((1 + 1).F (~t)).

∗ F (~t) + 0→ F (~t). Note that a.(F (~t) + 0) = 2 + a(F (~t)) ≥ a(F (~t)).

• Suppose it is true for n, then consider ~t such that s(~t) = n+ 1. Again, we show that F (~t) is SN by
induction on a(F (~t)).

– If a(F (~t)) = 0, then F (~t) = 0 which is SN.

– Suppose it is true for all F (~t) of algebraic measure less or equal to m, and consider F (~t) such
that a(F (~t)) = m+ 1. Since the ti are not linear combinations, F (~t) can reduce in two ways:

∗ F (t1, . . . ti, . . . tk) → F (t1, . . . t
′
i, . . . tk) with ti → t′i. Then write t′i as H(r1, . . . rl) for

some algebraic context H, where the rj ’s are not linear combinations. Note that

l∑
j=1

s(rj) ≤ s(t′i) < s(ti).

Define the context

G(t1, . . . , ti−1,u1, . . .ul, ti+1, . . . tk) = F (t1, . . . , ti−1, H(u1, . . .ul), ti+1, . . . tk).

The term F (~t) then reduces to the term

G(t1, . . . , ti−1, r1, . . . rl, ti+1 . . . tk),

where
s(t1, . . . , ti−1, r1, . . . rl, ti+1 . . . tk) < s(~t).

Using the top induction hypothesis, we can conclude that F (t1, . . . t
′
i, . . . tk) is SN.

∗ F (~t)→ G(~t), with a(G(~t)) < a(F (~t)). Using the second induction hypothesis, we conclude
that G(~t) is SN

134

Appendix D. Proofs from Chapter 5

All the possible reducts of F (~t) are SN: so is F (~t).

This closes the proof of the claim. Now, consider any SN terms {ti}i and any linear combination made
of them. It can be written as F (~t). The hypotheses of the claim are satisfied: F (~t) is SN. �

Now we can prove the Lemma.
Lemma 5.4.1. If A, B and all the Ai’s are in RC, then so are A → B,

∑
iAi and ∩iAi.

Proof.

A → B

RC1: Assume that t ∈ A → B is not in SN . Then there is an infinite sequence of reduction (tn)n
with t0 = t. So there is an infinite sequence of reduction ((tn) b)n starting with (t)b, for all
base terms b. This contradicts the definition of A → B.

RC2: We must show that if t → t′ and t ∈ A → B, then t′ ∈ A → B. Let t such that ∀b ∈ A,
(t) b ∈ B. Then by RC2 in B, (t′) b ∈ B, and so t′ ∈ A → B. If t is neutral and
Red(t) ⊆ A → B, then t′ ∈ A → B since t′ ∈ Red(s). If t = 0, it does not reduce.

RC3 and RC4: Trivially true by definition.∑
iAi

RC1: If t ∈ {
∑
i αi.ti | ti ∈ Ai}, the result is trivial by conditionRC1 on theAi and Lemma D.13.1.

If t is neutral and Red(t) ⊆ A+B, then t is strongly normalising since all elements of Red(t)
are strongly normalising.

RC2 and RC3: Trivially true by definition.
RC4: Since

∑
i 0 · ti ∈

∑
iAi, by RC2, 0 is also in the set.

∩iAi

RC1: Trivial since ∀i, Ai ⊆ SN .
RC2: Let t ∈ ∩iAi, then ∀i, t ∈ A)i and so by RC2 in Ai, Red(t) ⊆ Ai. Thus Red(t) ⊆ ∩iAi.
RC3: Let t ∈ N and Red(t) ⊆ ∩iA. Then ∀i, Red(t) ⊆ Ai, and thus, by RC3 in Ai, t ∈ Ai, which

implies t ∈ ∩iAi.
RC4: By RC4, ∀i, 0 ∈ Ai, then 0 ∈ ∩iAi.

�

D.14 Proof of Corollary 5.4.2
Corollary 5.4.2 (of Lemma 5.2.2). Any type T has a decomposition T ≡

∑n
i=1 αi.Ui such that

∀j, k, Uj 6≡ Uk.

Proof. By Lemma 5.2.2, T ≡
∑n
i=1 αi.Ui. Assume ∃j, k such that Uj ≡ Uk, then notice that T ≡

(αj + αk).Uj +
∑n

i=1

i 6=j∨k
αi.Ui.. Repeat the process until there is no j, k such that Uj 6≡ Uk. �

D.15 Proof of Lemma 5.4.3
First we need a few auxiliary lemmas:

Lemma D.15.1. Given a (valid) valuation ρ = (ρ+, ρ−), for all types T we have [|T |]ρ̄ ⊆ [|T |]ρ.

Proof. Structural induction on T .

• T = X. Then [|T |]ρ̄ = ρ−(X) ⊆ ρ+(X) = [|T |]ρ.

• T = U → R. Then [|U → R|]ρ̄ = [|U |]ρ → [|R|]ρ̄. By the induction hypothesis [|U |]ρ̄ ⊆ [|U |]ρ and
[|R|]ρ̄ ⊆ [|R|]ρ. We must show that ∀t ∈ [|U → R|]ρ̄, t ∈ [|U → R|]ρ. Let t ∈ [|U → R|]ρ̄ = [|U |]ρ →
[|R|]ρ̄. We proceed by induction on the definition of →.

135

Appendix D. Proofs from Chapter 5

– Let t ∈ {r | ∀b ∈ [|U |]ρ, (r) b ∈ [|R|]ρ̄}. Notice that forall b ∈ [|U |]ρ̄, b ∈ [|U |]ρ, and so
(t) b ∈ [|R|]ρ̄ ⊆ [|R|]ρ. Thus t ∈ [|U |]ρ̄ → [|R|]ρ = [|U → R|]ρ.

– Let Red(t) ∈ [|U → R|]ρ̄ and t ∈ N . By the induction hypothesis Red(t) ∈ [|U → R|]ρ and so,
by RC3, t ∈ [|U → R|]ρ.

– Let t = 0. By RC4, 0 is in any reducibility candidate, in particular it is in [|U → R|]ρ.

• T = ∀X.S, where S is a unit type. Then [|∀X.S|]ρ̄ = ∩A⊆B∈RC [|S|]ρ̄,(X+,X−)7→(A,B). By the induction
hypothesis [|S|]ρ̄ ⊆ [|S|]ρ, then ∀A,B, [|S|]ρ̄,(X+,X−)7→(A,B) ⊆ [|S|]ρ,(X+,X−) 7→(A,B). Thus we have
∩A⊆B∈RC [|S|]ρ̄,(X+,X−) 7→(A,B) ⊆ ∩A⊆B∈RC [|S|]ρ,(X+,X−)7→(A,B) = [|∀X.S|]ρ.

• T is not a unit type and T ≡
∑
i αi · Ui. Then [|T |]ρ̄ =

∑
i [|Ui|]ρ̄. By the induction hypothesis

[|Ui|]ρ̄ ⊆ [|Ui|]ρ. We proceed by induction on the definition of
∑
i [|Ui|]ρ̄.

– Let t ∈ {
∑
i αi · ri | ri ∈ [|Ui|]ρ̄}. Note that ∀r ∈ [|Ui|]ρ̄, r ∈ [|Ui|]ρ and so the result holds.

– Let Red(t) ∈
∑
i [|Ui|]ρ̄ and t ∈ N . By the induction hypothesis Red(t) ∈

∑
i [|Ui|]ρ and so, by

RC3, t ∈
∑
i [|Ui|]ρ.

– Let t = 0. By RC4, 0 is in any reducibility candidate.
�

Lemma D.15.2. Let ρ = (ρ+, ρ−) and ρ′ = (ρ′+, ρ
′
−) be two valuations such that ∀X, ρ′−(X) ⊆ ρ−(X)

and ρ+(X) ⊆ ρ′+(X). Then for any type T we have [|T |]ρ ⊆ [|T |]ρ′ and [|T |]ρ̄′ ⊆ [|T |]ρ̄.

Proof. Structural induction on T .

• T = X. Then [|X|]ρ = ρ+(X) ⊆ ρ′+(X) = [|X|]ρ′ and [|X|]ρ̄′ = ρ′−(X) ⊆ ρ−(X) = [|X|]ρ̄.

• T = U → R. Then [|U → R|]ρ = [|U |]ρ̄ → [|R|]ρ and [|U → R|]ρ̄′ = [|U |]ρ′ → [|R|]ρ̄′ . By the induction
hypothesis [|U |]ρ̄′ ⊆ [|U |]ρ̄ , [|U |]ρ ⊆ [|U |]ρ′ , [|R|]ρ ⊆ [|R|]ρ′ and [|R|]ρ̄′ ⊆ [|R|]ρ̄. We proceed by induction
on the definition of → to show that ∀t ∈ [|U |]ρ̄ → [|R|]ρ, then t ∈ [|U |]ρ̄′ → [|R|]ρ′ = [|U → R|]ρ′

– Let t ∈ {r | ∀b ∈ [|U |]ρ̄, (r) b ∈ [|R|]ρ}. ∀b ∈ [|U |]ρ̄′ , b ∈ [|U |]ρ̄ and then (t) b ∈ [|R|]ρ ⊆ [|R|]ρ′ .
– Let Red(t) ∈ [|U → R|]ρ and t ∈ N . By the induction hypothesis Red(t) ∈ [|U → R|]ρ′ and so,

by RC3, t ∈ [|U → R|]ρ′ .
– Let t = 0. By RC4, 0 is in any reducibility candidate, in particular it is in [|U → R|]ρ′ .

Analogously, ∀t ∈ [|U |]ρ′ → [|R|]ρ̄′ , t ∈ [|U |]ρ → [|R|]ρ̄ = [|U → R|]ρ.

• T = ∀X.S. Then [|∀X.S|]ρ = ∩A⊆B∈RC [|S|]ρ,(X+,X−)7→(A,B). By the induction hypothesis [|S|]ρ ⊆
[|S|]ρ′ , then ∀A,B, [|S|]ρ,(X+,X−)7→(A,B) ⊆ [|S|]ρ′,(X+,X−)7→(A,B). Thus ∩A⊆B∈RC [|S|]ρ,(X+,X−) 7→(A,B) ⊆
∩A⊆B∈RC [|S|]ρ′,(X+,X−) 7→(A,B) = [|∀X.S|]ρ′ . The case [|∀X.S|]ρ̄′ ⊆ [|∀X.S|]ρ̄ is completely analogous.

• T is not a unit type and T ≡
∑
i αi ·Ui. Then [|T |]ρ =

∑
i [|Ui|]ρ. By the induction hypothesis [|Ui|]ρ ⊆

[|Ui|]ρ′ . We proceed by induction on the definition of
∑
i Ui to show that

∑
i [|Ui|]ρ ⊆

∑
i [|Ui|]ρ′ .

– Let t ∈ {
∑
i αi · ri | ri ∈ [|Ui|]ρ}, Notice that ∀ri ∈ [|Ui|]ρ, ri ∈ [|Ui|]ρ′ and so

∑
i αi.ri ∈∑

i [|Ui|]ρ′ = [|T |]ρ′ .
– Let Red(t) ∈ [|T |]ρ and t ∈ N . By the induction hypothesis Red(t) ⊆ [|T |]ρ′ and so, by RC3,

t ∈ [|T |]ρ′ .
– Let t = 0. By RC4, 0 is in any reducibility candidate, in particular it is in [|T |]ρ′ .

The case [|T |]ρ̄′ ⊆ [|T |]ρ̄ is completely analogous.
�

Lemma D.15.3. For all reducibility candidates A, A ⊆ 1.A. Moreover, if b ∈ 1.A is a base term, then
b ∈ A.

Proof. For all t ∈ A, the term 1.t ∈ 1 · A. Since 1.t→ t, we conclude using RC2.
Now, consider b ∈ 1.A. We proceed by structural induction on 1.A.

136

Appendix D. Proofs from Chapter 5

• Base case: the sum is trivial: the term b is in A.

• Suppose that t is in 1.A and that t→ b, with b a base term. We prove that b is in A by induction
on the length of the longest reduction sequence starting from t.

• Suppose that t is neutral, yet a base term, and that Red(t) ⊆ 1.A. Then t would have to be a
lambda-abstraction, which it cannot since it is neutral: we do not consider this case.

�

Lemma D.15.4. For all reducibility candidates {Ai,1}i=1···n1
, {Ai,2}i=1···n2

, if s ∈
∑n1

i=1Ai,k and t ∈∑n2

i=1Ai,2, then s + t ∈
∑
k=1,2,i=1···nk Ai,k.

Proof. By structural induction on
∑n1

i=1Ai,1 and
∑n2

i=1Ai,2.

• If s and t are respectively of the form
∑
i αi.si and

∑
j βj .tj , it is trivial.

• If s is of that form but t is neutral such that Red(t) ⊆
∑
iAi,2, then using the induction hypothesis,

Red(s + t) is in
∑
k=1,2,i=1···nk Ai,k. We conclude with RC3.

The other cases are similar. �

Lemma D.15.5. Suppose that s ∈ A → B and b ∈ A, then (s)b ∈ B.

Proof. Induction on the definition of A → B.

• If s is in {s | ∀b ∈ A, (s)b ∈ B}, then it is trivial

• If s is in A → B because r is in A → B and r→ s, then by the induction hypothesis b in A implies
(r)b in B, so by RC2, (s)b is in B.

• If s in A → B because s is neutral and Red(s) ⊆ A → B, we do a case by case analysis on r in
Red((s)b) to show that (s)b is in B (and so is (s)b by RC3).

– r = (t)b, with t in Red(s), then by the induction hypothesis, for any t in Red(s), (t)b is in
B.

– r = (s)b′ with b→ b′, then b′ is also a base term in A, so the result holds.

– The case s = λx.t and r = t[b/x] cannot occur because s has to be neutral by hypothesis.
�

Now we can prove the Adequacy Lemma:
Lemma 5.4.3 (Adequacy Lemma). Every derivable typing judgement is valid: for every valid sequent
Γ ` t : T , we have Γ |= t : T .

Proof. We proceed by induction on the size of the typing derivation of Γ ` t : T . We look at the
last typing rule that is used, and show in each case that Γ |= t : T , i.e. if T ≡

∑n
i=1 αi.Ui in the

sense of Corollary 5.4.2, then tσ ∈
∑n
i=1 [|Ui|]ρ,ρi for every valuation ρ, set of valuations {ρi}n, and

substitution σ ∈ [|Γ|]ρ (i.e. substitution σ such that (x : V) ∈ Γ implies xσ ∈ [|V |]ρ̄).

1. ax
Γ, x :U ` x :U

Then for any ρ, ∀σ ∈ [|Γ, x :U |]ρ by definition we have xσ ∈ [|U |]ρ̄,∅.
From Lemma D.15.1, we deduce that xσ ∈ [|U |]ρ,∅, i.e. xσ ∈ [|1.U |]ρ,∅ by
Lemma D.15.3.

2.
Γ ` t :T

0I
Γ ` 0 : 0.T

Note that ∀σ, 0σ = 0, and 0 is in any reducibility candidate by RC4.

137

Appendix D. Proofs from Chapter 5

3.
Γ, x :U ` t :T

→I
Γ ` λx.t :U → T

Let T ≡
∑n
i=1 αi.Ui. Then by the induction hypothesis, for any

ρ, set {ρi}n not acting on FV (Γ), and ∀σ ∈ [|Γ, x :U |]ρ, we have
tσ ∈

∑n
i=1 [|Ui|]ρ,ρi . Then by Lemma D.15.3 it is enough to prove

that ∀σ ∈ [|Γ|]ρ, (λx.t)σ ∈ [|U → T |]ρ,ρ′ , or what is the same λx.tσ ∈
[|U |]ρ̄,ρ̄′ → [|T |]ρ,ρ′ , where ρ′ does not act on FV (Γ). If we can show
that b ∈ [|U |]ρ̄,ρ̄′ implies (λx.tσ) b ∈ [|T |]ρ,ρ′ , then we are done. Take
b ∈ [|U |]ρ̄,ρ̄′ and write σ′ = σ;x 7→ b. Then σ′ ∈ [|Γ, x :U |]ρ,ρ′ , thus
tσ′ ∈

∑n
i=1 [|Ui|]ρ,ρ′,∅, so tσ′ is strongly normalising, and we show by in-

duction that (λx.tσ) b ∈ [|T |]ρ,ρ′ =
∑n
i=1 [|Ui|]ρ,ρ′,∅. Since it is a neutral

term, we just need to prove that every one-step reduction of it is in [|T |]ρ,
which by RC2 closes the case.

Structural induction on the reduct of (λx.tσ) b:

(λx.tσ) b→ (λx.tσ) b′ with b→ b′. Then b′ ∈ [|U |]ρ̄,ρ̄′ and we close by induction hypothesis.

(λx.tσ) b→ (λx.t′) b with tσ → t. Since tσ ∈
∑n
i=1 [|Ui|]ρ,ρi for any {ρi}n not acting on FV (Γ),

take ∀i, ρi = ρ′, so tσ ∈ [|T |]ρ,ρ′ and so are its reducts, such as t′. We close by induction
hypothesis.

(λx.tσ) b→ tσ[b/x] notice that tσ[b/x] = tσ′ ∈ [|T |]ρ,ρi .

4.

Γ ` t :

n∑
i=1

αi.∀ ~X.(U → Ti) Γ ` r :

m∑
j=1

βj .Vj ∀Vj , ∃ ~Wj , / U [~Wj/ ~X] = Vj

→E

Γ ` (t) r :

n∑
i=1

m∑
j=1

αi × βj .Ti[~Wj/ ~X]

Without loss of generality, assume each Ti is different from each other, and the same for Vj . By
the induction hypothesis, for any ρ, {ρi,j}n,m not acting on FV (Γ), and ∀σ ∈ [|Γ|]ρ we have tσ ∈∑n
i=1 ∩ ~A⊆~B∈RC [|(U → Ti)|]ρ,ρi,(~X+, ~X−)7→(~A, ~B) and rσ ∈

∑m
j=1 [|Vj |]ρ,ρj .

For all i, j, let Ti[~Wj/ ~X] ≡
∑rij

k=1 δ
ij
k .W

ij
k . We want to show that for any ρ, sets {ρ′i,j,k}ri,j not

acting on FV (Γ) and ∀σ ∈ [|Γ|]ρ, ((t) r)σ ∈
∑
i=1···n,j=1···m,k=1···rij [|W ij

k |]ρ,ρijk Since both tσ and
rσ are strongly normalising, we proceed by induction on the sum of the lengths of their rewrite
sequence. The set Red(((t) r)σ) contains:

• (tσ) r′ or (t′) rσ when tσ → t′ or rσ → r′. By RC2, the term t′ is in the reducibility candi-
date

∑n
i=1 ∩ ~A⊆~B∈RC [|(U → Ti)|]ρ,ρi,(~X+, ~X−)7→(~A, ~B) and r′ is in

∑m
j=1 [|Vj |]ρ,ρj . We conclude by

induction hypothesis.

• A term coming from one of the rewrite rules of Group A. We conclude by noting that we
obtain a linear combination of terms smaller than the original one. We can conclude with the
induction hypothesis, Lemma 5.3.15 and the definition of the sum of reducibility candidates.

• The term t′σ[rσ/x], when tσ = λx.t′ and r is a base term. Note that this term is of the form
t′σ′ where σ

′ = σ;x 7→ r. We are in the situation where the types of t and r are respectively
∀ ~X.(U → T) and V , and there is ~W such that U [~W/ ~X] = V , and so

∑
i,j,k [|W ij

k |]ρ,ρijk =∑r
k=1 [|Wk|]ρ,ρk , where we omit the index “11”. Note that (using Lemma D.15.3)

λx.t′σ ∈ [|∀ ~X.(U → T)|]ρ,ρ′ = ∩ ~A⊆~B∈RC [|U → T |]ρ,ρ′,(~X+, ~X−) 7→(~A, ~B)

for all possible ρ′ such that |ρ′| does not intersect FV (Γ). Choose ~A and ~B equal to [| ~W |]ρ,ρ′
and choose ρ′− to send every X in its domain to ∩kρk−(X) and ρ′+ to send all the X in its
domain to

∑
k ρk+(X). Then

λx.t′σ ∈ [|U → T |]ρ,ρ′, ~X 7→ ~W = [|V |]ρ,ρ′ → [|T |]ρ,ρ′, ~X 7→ ~W .

138

Appendix D. Proofs from Chapter 5

The valuation ~X 7→ ~W is a shortcut for (X+, X−) 7→ ([|W |]ρ̄,ρ̄′ , [|W |]ρ,ρ′). For all base terms
b ∈ 1.[|V |]ρ̄,ρ̄′ , by Lemma D.15.3 they are in [|V |]ρ̄,ρ̄′ and we have by Lemma D.15.5

(λx.tσ) b ∈ [|T |]ρ,ρ′, ~X 7→ ~W = [|T [~W/ ~X]|]ρ,ρ′ =

[∣∣∣∣∣
r∑

k=1

δk.Wk

∣∣∣∣∣
]
ρ,ρ′

=

n∑
k=1

[|Wk|]ρ,ρ′ .

Now, from Lemma D.15.2, for all k we have [|Wk|]ρ,ρ′ ⊆ [|Wk|]ρ,ρk . Therefore

(λx.tσ) b ∈
n∑
k=1

[|Wk|]ρ,ρk

Since r ∈ 1.[|V |]ρ̄,ρ̄′ , we are done.

Since the set Red(((t) r)σ) ⊆
∑
i=1···n,j=1···m,k=1···rij [|W ij

k |]ρ,ρijk , we can conclude by RC3.

5.

Γ ` t :

n∑
i=1

αi.Ui X /∈ FV (Γ)

∀I
Γ ` t :

n∑
i=1

αi.∀X.Ui

By the induction hypothesis, for any ρ, set {ρi}n not acting
on FV (Γ), we have ∀σ ∈ [|Γ|]ρ, tσ ∈

∑n
i=1 [|Ui|]ρ,ρi . Since

X /∈ FV (Γ), we can take ρi = ρ′i, (X+, X−) 7→ (A,B), then for
any A ⊆ B, tσ ∈

∑n
i=1 [|Ui|]ρ,ρ′i,(X+,X−) 7→(A,B). Since it is valid

for any A ⊆ B, we can take the intersections, thus we have tσ ∈∑n
i=1 ∩A⊆B∈RC [|Ui|]ρ,ρ′i,(X+,X−)7→(A,B) =

∑n
i=1 [|∀X.Ui|]ρ,ρ′i .

6.

Γ ` t :

n∑
i=1

αi.∀X.Ui
∀E

Γ ` t :

n∑
i=1

αi.Ui[V/X]

By the induction hypothesis, for any ρ and {ρi}n, we have ∀σ ∈ [|Γ|]ρ,
tσ ∈

∑n
i=1 [|∀X.Ui|]ρ,ρi =

∑n
i=1 ∩A⊆B∈RC [|Ui|]ρ,ρ′i,(X+,X−)7→(A,B).

Since it is in the intersections, we can chose A = [|V |]ρ̄,ρ̄i and
B = [|V |]ρ,ρi , and then tσ will be in those particular sets, so tσ ∈∑n
i=1 [|Ui|]ρ,ρ′i,X 7→V =

∑n
i=1 [|Ui[V/X]|]ρ,ρ′i .

7.
Γ ` t :T

αI
Γ ` α.t :α.T

Let T ≡
∑n
i=1 βi.Ui, so α.T ≡

∑n
i=1 α × βi.Ui. By the induction hypothesis,

for any ρ, we have ∀σ ∈ [|Γ|]ρ, tσ ∈
∑n
i=1 [|Ui|]ρ,ρi . Note that (α.t)σ = α.tσ ∈∑n

i=1 [|Ui|]ρ,ρi .

8.
Γ ` t :T Γ ` r :R

+I
Γ ` t + r :T +R

Let T ≡
∑n
i=1 αi.Ui,1 and R ≡

∑m
j=1 βj .Uj,2. By the induction

hypothesis, for any ρ, {ρi}n, {ρ′j}m, we have ∀σ ∈ [|Γ|]ρ, tσ ∈∑n
i=1 [|Ui,1|]ρ,ρi and rσ ∈

∑m
j=1 [|Uj,2|]ρ,ρ′j . Then by Lemma D.15.4,

(t + r)σ = tσ + rσ ∈
∑
i,k [|Ui,k|]ρ,ρi .

9.
Γ ` t :T T ≡ R

≡
Γ ` t :R

Let T ≡
∑n
i=1 αi.Ui in the sense of Corollary 5.4.2, then since T ≡ R, R

is also equivalent to
∑n
i=1 αi.Ui, so Γ � t :T ⇒ Γ � t :R.

�

139

Appendix D. Proofs from Chapter 5

140

Appendix E

Proofs from Chapter 6

E.1 Proof of Theorem 6.2.2
Theorem 6.2.2 (Subject Reduction). For any terms t and t′, context Γ and type T , For any terms t
and t′, context Γ and type T , if t → t′ and Γ ` t :T then there exists some type R such that Γ ` t′ :R
and T 4 R.

Proof. We proceed by induction on t→ t′.

Elementary rules

Rule u + 0→ u. Let Γ ` u + 0 : T . Then by Lemma 6.2.4(3), there exist types R,S such that
Γ ` u :R and Γ ` 0 : S, with R + S ≡ T . By Remark 6.2.7, we have S ≡ 0, therefore
R+ 0 ≡ R ≡ T , and, by rule ≡, we conclude Γ ` u :T .

Rule 0.u→ 0. Let Γ ` 0.u : T , then by Lemma 6.2.4(4) we have T ≡ 0. By rule ax0 we have
Γ ` 0 : 0.

Rule 1.u→ u. Let Γ ` 1.u : T , then by Lemma 6.2.4(4), there exists R such that Γ ` u :R and
R ≡ T . Therefore, by rule ≡ we have Γ ` u :T .

Rule α.0→ 0. Let Γ ` α.0 : T , then by Lemma 6.2.4(4) we have Γ ` 0 :R with bαc.R ≡ T .
However, by Remark 6.2.7, we have R ≡ 0, so 0 ≡ T . By rule ≡ we conclude Γ ` 0 :T .

Rule α.(β.u)→ (α× β).u. True by Lemma 6.2.9.

Rule α.(u + t)→ α.u + α.t. True by Lemma 6.2.10.

Factorisation rules

Rule α.u + β.u→ (α+ β).u. True by Lemma 6.2.11.

Rule α.u + u→ (α+ 1).u. Let Γ ` α.u + u : T , then by rule sI , Γ ` 1.(α.u + u) : 1.T . So, by
Lemma 6.2.10, Γ ` 1.α.u + 1.u :R1 with 1.T 4 R1. By Lemma 6.2.4(3), there exist types R,S
such that Γ ` 1.α.u :R and Γ ` 1.u : S, with R + S ≡ R1. Then, by Lemma 6.2.9, we have
Γ ` α.u :R, so with rule +I we can conclude Γ ` α.u + 1.u :R+ S and then Γ ` α.u + 1.u :R1

by rule ≡. Finally, by Lemma 6.2.11, we conclude Γ ` (α+ 1).u :R2, with R1 4 R2. Notice
that T ≡ 1.T 4 R1 4 R2.

Rule u + u→ (1 + 1).u. Let Γ ` u + u :T . By rule sI , Γ ` 1.(u + u) : 1.T . So by Lemma 6.2.10,
we have Γ ` 1.u + 1.u :R1 with T 4 R1. Then by Lemma 6.2.11, Γ ` (1 + 1).u :R2 with
R1 4 R2, hence T 4 R2.

Application rules

Rule (u + r) t→ (u) t + (r) t. Let Γ ` (u + r) t :T . Then, by Lemma 6.2.4(1) there exist natural
numbers n and m and types U, T1, . . . , Tn such that Γ ` u + r :

∑n
i=1(U → Ti) and Γ ` t :m.U ,

with
∑n
i=1m.Ti ≡ T . Then by Lemma 6.2.4(3), there exist R and S such that Γ ` u :R

and Γ ` r : S, with R + S ≡
∑n
i=1(U → Ti). Furthermore, by Remark 4.1.2, there exist

141

Appendix E. Proofs from Chapter 6

natural numbers k and p and types V1, . . . , Vk,W1, . . . ,Wp such that R ≡
∑k
j=1 Vj , S ≡∑p

k=1Wk, where these sums are minimal, i.e. Wi 6= 0 and Vi 6= 0 for all i. Due to the
shape of

∑n
i=1(U → Ti), we have that for each j = 1, . . . , k, there is some ij such that

Vj ≡ U → Tij . Let A ⊂ {1, . . . , n} such that ij ∈ A for all j. Analogously, for each
k = 1, . . . , p, there is some ik such that Wk ≡ U → Tik . Therefore, R ≡

∑k
j=1 Vj ≡

∑k
j=1 U →

Tij ≡
∑
i∈A U → Ti and S ≡

∑p
k=1Wk ≡

∑p
k=1 U → Tik ≡

∑
k∈Ā U → Tk. So by rule ≡,

we have Γ ` u :
∑
i∈A U → Ti and Γ ` r :

∑
k∈Ā U → Tk. Hence, using rule →E we can derive

Γ ` (u) t :
∑
i∈Am.Ti and Γ ` (r) t :

∑
k∈Ām.Tk, from where, using +I , can be derived Γ `

(u) t + (r) t :
∑
i∈Am.Ti +

∑
k∈Ām.Tk. Note that

∑
i∈Am.Ti +

∑
k∈Ām.Tk ≡

∑n
i=1m.Ti ≡

T . Then by rule ≡ we have Γ ` (u) t + (r) t :T .

Rule t (u + r)→ (t) u + (t) r. Let Γ ` t (u + r) :T . Then by Lemma 6.2.4(1), there exist natural
numbers n and m and types U, T1, . . . , Tn such that Γ ` t :

∑n
i=1(U → Ti) and Γ ` u + r :m.U ,

with
∑n
i=1(m.Ti) ≡ T . Then by Lemma 6.2.4(3), there exist types R,S such that Γ ` u :R

and Γ ` r : S, with R + S ≡ m.U ≡
∑m
i=1 U . We know m = k + p, where R ≡ k.U and

S ≡ p.U . Then, by rule ≡, we have Γ ` u : k.U and Γ ` r : p.U . Therefore, by rules →E and
+I , we can derive Γ ` (t) u+(t) r :

∑n
i=1 k.Ti+

∑n
i=1 p.Ti. Note that

∑n
i=1 k.Ti+

∑n
i=1 p.Ti ≡∑n

i=1(k.Ti + p.Ti) ≡
∑n
i=1m.Ti ≡ T . Hence by rule ≡ we have Γ ` (t) u + (t) r :T .

Rule (0) u→ 0. True by Lemma 6.2.8 and rule ax0.

Rule (u) 0→ 0. True by Lemma 6.2.8 and rule ax0.

Beta reduction

Rule (λx : U.t) b→ t[b/x]. Let Γ ` (λx :U.t) b :T . Then, by Lemma 6.2.4(1) there exist natural
numbers n,m and types T1, . . . , Tn such that Γ ` λx :U.t :

∑n
i=1 U → Ti and Γ ` b :m.U ,

with
∑n
i=1m.Ti ≡ T . In addition, by Lemma 6.2.12, we have Γ ` λx :U.t : U → T1 and

Γ ` b :U . Then by Corollary 6.2.5, we have Γ ` [Γ, x : U]t : T1. Therefore, by Lemma 6.2.6,
Γ ` t[b/x] :T1. Finally, since T1 ≡ T , by rule ≡ we have Γ ` t[b/x] :T .

Rule (ΛX.t)@U → t[U/X]. Let Γ ` (ΛX.t)@U :T . Then, by Lemma 6.2.4(6) there exists a type
R such that Γ ` ΛX.t : ∀X.R and R[U/X] ≡ T . Moreover, by Lemma 6.2.4(5) there exists
a type S such that Γ ` t : S, where X /∈ FV(Γ) and ∀X.S ≡ ∀X.R. By Lemma 6.2.6,
Γ[U/X] ` t[U/X] :S[U/X] and since X /∈ FV(Γ) we have Γ ` t[U/X] :S[U/X]. Finally, since
S ≡ R and R[U/X] ≡ T , we can use rule ≡ to conclude Γ ` t[U/X] :T .

AC equivalences

Commutativity of + . We must prove that u + r and r + u have equivalent types. Let Γ `
u + r : T . Then, by Lemma 6.2.4(3) there exist R,S such that Γ ` u :R and Γ ` r : S, with
R + S ≡ T . Then using +I , one gets Γ ` r + u :S +R. Note that S + R ≡ R + S ≡ T , then
by rule ≡ we have Γ ` r + u :T .

Associativity of + We must prove that (u + r) + t and u + (r + t) have equivalent types. Let
Γ ` (u + r) + t :T . Then, by Lemma 6.2.4(3), there exist R1, R2 such that Γ ` u + r :R1 and
Γ ` t :R2, with R1 + R2 ≡ T . Then by Lemma 6.2.4(3) again, there exist S1, S2 such that
Γ ` u :S1 and Γ ` r :S2, with S1 + S2 ≡ R1. Therefore, using +I twice, in the correct order,
we can derive Γ ` u + (r + t) :S1 + (S2 +R2). Note that S1 + (S2 +R2) ≡ (S1 + S2) +R2 ≡
R1 +R2 ≡ T , so by rule ≡, we have Γ ` u + (r + t) :T .

Contextual rules The inductive cases are applications of the context rules, which trivially follows by
induction.

�

E.2 Proof of Lemma 6.3.2

Lemma 6.3.2. If Γ ` t :T , then ∃∆, R such that ∆ `v |t| :R.

142

Appendix E. Proofs from Chapter 6

Proof. First we define a translation from a subset of types in Vectorial to types in λCA. Consider the
subset of types of Vectorial , where scalars range over non-negative real numbers. Then the translation
has this subset as domain:

|X| = X |U → T | = |U | → |T | |∀X.U | = ∀X.|U | |α.T | = bαc.|T | |T +R| = |T |+ |R|

where n.T =
∑n
i=1 T with the convention that 0.T = 0. We also extend this definition to contexts:

|Γ| = {x : |U | | U ∈ Γ}.
Then we prove by induction on the length of the type derivation of Γ ` t : T that |Γ| `v |t| :R with

|R| ≡ T .

1. ax
Γ, x :U ` x :U

Then by rule ax in Vectorial , |Γ|, x : |U | `v x : |U |. Notice that |x| = x.

2. ax
Γ ` 0 : 0

Then take any type T and term t such that |Γ| `v t : T , and so by rule 0I , |Γ| `v
0 : 0.T . Notice that |0| = 0 and |0.T | = 0.

3.

Γ ` t :

n∑
i=1

U → Ti Γ ` r :m.U

→E

Γ ` (t) r :

n∑
i=1

m.Ti

Then by the induction hypothesis, ∃R,S such that |Γ| `v
|t| :R and |Γ| `v |r| : S, with |R| ≡

∑n
i=1 U → Ti and

|S| ≡ m.U . Notice that the translation of types from
Vectorial to types of λCA only acts on the scalars by
converting them on sums. The rest of the structure of the
type remains untouched. Then we can easily prove using
structural induction that R ≡

∑n
i=1 αi.U

′ → T ′i and S ≡
β.U ′ such that bβc = m, |U ′| ≡ U and ∀i, |T ′i | ≡ Ti.
Then using rules ≡ and →E in Vectorial , we can derive
|Γ| `v (|t|) |r| :

∑n
i=1 β.T

′
i . Notice that |(t) r| = (|t|) |r|

and |
∑n
i=1 β.T

′
i | ≡

∑n
i=1m.Ti.

4.
Γ, x :U ` t :T

→I
Γ ` λx : U.t :U → T

Then by the induction hypothesis, exists R such that |R| ≡ T and
|Γ|, x : |U | `v |t| :R. Then using rule →I in Vectorial , we can derive
|Γ| `v λx.|t| : |U | → R. Notice that |λx : U.t| = λx.|t| and ||U | → R| =
||U || → |R|. It is easy to check that if we take a type in λCA and do
its translation using | · |, we obtain the same type. So ||U || = |U | = U .
Then ||U || → |R| ≡ U → T .

5.
Γ ` t :∀X.U

∀E
Γ ` t@V :U [V/X]

Then by the induction hypothesis ∃R such that |Γ| `v |t| :R, with |R| ≡
∀X.U . Then R ≡ α.∀X.U ′ where bαc = 1 and |U ′| = U . So, using rules
≡ and ∀E in Vectorial , we can derive |Γ| `v |t| :α.U ′[V/X]. Notice that
|t@V | = |t| and since |V | = V , |α.U ′[V/X]| ≡ U [V/X].

6.
Γ ` t :U X /∈ FV (Γ)

∀I
Γ ` ΛX.t :∀X.U

Then by the induction hypothesis ∃R such that |Γ| `v |t| :R, with
|R| ≡ U , so R ≡ α.U ′ with bαc = 1 and |U ′| = U . Notice also
that X /∈ FV (|Γ|). Thus, using rules ≡ and ∀I in Vectorial , we can
derive |Γ| `v |t| :α.∀X.U ′. Notice that |ΛX.t| = |t| and |α.∀X.U ′| ≡
∀X.|U ′| = ∀X.U .

7.
Γ ` t :T Γ ` r :R

+I
Γ ` t + r :T +R

Then by the induction hypothesis ∃T ′, R′ such that |Γ| `v |t| : T ′
and |Γ| `v |r| :R′, where |T ′| ≡ T and |R′| ≡ R. Then using rule
+I in Vectorial , we can derive |Γ| `v |t| + |r| : T ′ + R′. Notice that
|t + r| = |t|+ |r| and |T ′ +R′| = |T ′|+ |R′| ≡ T +R.

8.
Γ ` t :T

sI
Γ ` α.t : bαc.T

Then by the induction hypothesis ∃R such that |Γ| `v |t| :R and |R| ≡ T .
Then using rule sI in Vectorial , we can derive |Γ| `v α.|t| :α.R. Notice that
|α.t| = α.|t| and |α.R| = bαc.|R| ≡ bαc.T .

9.
Γ ` t :T T ≡ R

≡
Γ ` t :R

Then by the induction hypothesis ∃S such that |Γ| `v |t| : S with |S| ≡
T ≡ R.

�

143

Appendix E. Proofs from Chapter 6

E.3 Proof of Lemma 6.3.3
Lemma 6.3.3. There is no an infinite sequence reduction consisting only of type beta rules.

Proof. Consider the following function from terms to natural numbers:

σ(x : U) = 1 σ(ΛX.t) = 1 + σ(t) σ(t@U) =σ(t) σ(α.t) =σ(t)
σ(λx : U.t) =σ(t) σ((t) r) =σ(t) σ(r) σ(0) = 1 σ(t + r) =σ(t) + σ(r)

Then we prove by structural induction on t that σ((ΛX.t)@U) > σ(t[U/X]). Since it is positive a strictly
decreasing function on the type beta reduction, the sequence cannot be infinite.

We proceed with the induction. Notice that σ(t) = σ(t[U/X]) since it does not depend on the types
in t.

• t = x : V , then σ((ΛX.(x : V))@U) = 2 > 1 = σ(x : V [U/X]) = σ((x : V)[U/X]).

• t = λx : V.r, then σ((ΛX.(λx : V.r))@U) = 1 + σ(r) > σ(r) = σ(r[U/X]).

• t = ΛY.r, then σ((ΛX.ΛY.r)@U) = 2 + σ(r) > 1 + σ(r) = σ(ΛY.(r[U/X])) = σ((ΛY.r)[U/X]).

• t = (r) u, then σ((ΛX.(r) u)@U) = 1 + σ(r) + σ(u) > σ(r) + σ(u) = σ((r) u) = σ(((r) u)[U/X]).

• t = r@V , then σ((ΛX.(r@V))@U) = 1 + σ(r) > σ(r) = σ(r@V) = σ((r@V)[U/X]).

• t = 0, then σ((ΛX.0)@U) = 2 > 1 = σ(0) = σ(0[U/X]).

• t = α.r, then σ((ΛX.α.r)@U) = 1 + σ(r) > σ(r) = σ(α.r) = σ((α.r)[U/X]).

• t = r+u, then σ((ΛX.(r+u))@U) = 1 +σ(r) +σ(u) > σ(r) +σ(u) = σ(r+u) = σ((r+u)[U/X]).
�

E.4 Proof of Lemma 6.4.1
Lemma 6.4.1 (Poset).

1. v is a partial order relation

2. . is a partial order relation in ∼.

Proof.

1. For the purposes of the proof we use an equivalent definition of v and define it as the least relation
satisfying:

0 v t t v t t v t + t
t v t′ ⇒ λx : U.t v λx : U.t′ t v t′ ∧ r v r′ ⇒ (t) r v (t′) r′

t v t′ ⇒ ΛX.t v ΛX.t′ t v t′ ∧ r v r′ ⇒ t + r v t′ + r′

t v t′ ⇒ t@U v t′@U t v r ∧ r v u ⇒ t v u

where the first three rules replace the first rule in the definition of v in Section 6.4. The equivalence
can be shown by a simple inductive argument in one direction, and in the other direction by noting
that replacing (α, β) by (0, 1), (1, 1), and (1, 2) yields the new three rules.

Reflexivity and transitivity are trivial since they are part of the definition.

In order to prove antisymmetry, let us assume t v u and u v t. We proceed by induction on t v u.

• case 0 v t. Then t v 0 implies that t = 0.

• case t v t + t. This case is cannot happen, since then we would need t + t v t, which is not
part of the relation.

• In the rest of the cases the structure of the terms is preserved and no differences are introduced.

144

Appendix E. Proofs from Chapter 6

2. The relation . is a partial order on terms quotiented by ∼ because v restricted to normal forms is
a partial order. More explicitly:

t . t ⇔ t↓
A
v t↓

A

(t . u ∧ u . u ⇒ t . u) ⇔ (t↓
A
v u↓

A
∧ u↓

A
v u↓

A
⇒ t↓

A
v u↓

A
)

t . u ∧ u . t ⇔ t↓
A
v u↓

A
∧ u↓

A
v t↓

A
⇒ t↓

A
= u↓

A
⇔ t ∼ u

�

E.5 Proof of Theorem 6.4.2
We need some auxiliary lemmas in order to prove this theorem.

Lemma E.5.1. For any term t and base term b in λCA, σ(t[b/x]) = σ(t)[σ(b)/x]

Proof. We proceed by structural induction over t ∈ λCA.

• t = x. Then σ(x[b/x]) = σ(b) = x[σ(b)/x] = σ(x)[σ(b)/x].

• t = y. Then σ(y[b/x]) = σ(y) = y = y[σ(b)/x].

• t = λy : U.t′. Then σ((λy : U.t′)[b/x]) = σ(λy : U.t′[b/x]) and this is equal to λy : U.σ(t′[b/x])
which by the induction hypothesis is equal to λy : U.σ(t′)[σ(b)/x] = (λy : U.σ(t′))[σ(b)/x] = σ(λy :
U.t′)[σ(b)/x].

• t = (r) u. Then σ(((r) u)[b/x]) = σ((r[b/x]) u[b/x]) = (σ(r[b/x])) σ(u[b/x]), which by the induc-
tion hypothesis is equal to (σ(r)[σ(b)/x]) σ(u)[σ(b)/x] = ((σ(r)) σ(u))[σ(b)/x] = σ((r) u)[σ(b)/x].

• t = ΛX.r. Then σ((ΛX.r)[b/x]) = σ(ΛX.r[b/x]) = ΛX.σ(r[b/x]) which by the induction hypoth-
esis is equal to ΛX.σ(r)[σ(b)/x] = (ΛX.σ(r))[σ(b)/x] and this equal to σ(ΛX.r)[σ(b)/x].

• t = r@U . Then σ(r@U [b/x]) = σ(r[b/x]@U) = σ(r[b/x])@U which by the induction hypothesis
is equal to σ(r)[σ(b)/x]@U = σ(r)@U [σ(b)/x] = σ(r@U)[σ(b)/x].

• t = α.r. Then σ((α.r)[b/x]) = σ(α.r[b/x]) =
∑bαc
i=1 σ(r[b/x]), which by the induction hypothesis

is equal to
∑bαc
i=1 σ(r)[σ(b)/x] = (

∑bαc
i=1 σ(r))[σ(b)/x] = σ(α.r)[σ(b)/x].

• t = r+u. Then σ((r+u)[b/x]) = σ(r[b/x]+u[b/x]) = σ(r[b/x])+σ(u[b/x]) which by the induction
hypothesis is equal to σ(r)[σ(b)/x] + σ(u)[σ(b)/x] = (σ(r) + σ(u))[σ(b)/x] = σ(r + u)[σ(b)/x].

�

Lemma E.5.2. For any terms t1, t2 in λadd, (t1 + t2)↓
A
. t1↓A +t2↓A .

Proof. Notice that the only case where these terms are different is when one of the addends reduces to
0, in such case, their normal forms coincides, making it possible to compare in this way. �

Now we are ready to prove the theorem.
Theorem 6.4.2 (Abstract Interpretation). ↓ is a valid concretization of ↓

A
, that is, ∀t ∈λCA, σ(t)↓

A
.

σ(t↓).

Proof. We proceed by structural induction over t ∈λCA.

1. t = x or t = 0. Then σ(t)↓
A

= t = σ(t↓).

2. t = λx : U.r. Then by the induction hypothesis σ(r) ↓
A
. σ(r ↓) and so σ(λx : U.r) ↓

A
= λx :

U.σ(r)↓
A
. λx : U.σ(r↓) = σ(λx : U.r↓).

3. t = ΛX.r. By the induction hypothesis σ(r)↓
A
. σ(r↓), so σ(ΛX.r)↓

A
= ΛX.σ(r)↓

A
. ΛX.σ(r↓) =

σ(ΛX.r↓).

4. t = r@U . By the induction hypothesis σ(r)↓
A
. σ(r↓), so σ(r@U)↓

A
= σ(r)↓

A
@U . σ(r↓)@U =

σ(r@U↓).

145

Appendix E. Proofs from Chapter 6

5. t = α.r. Case by case on the possible one-step →-reductions starting from α.r.

(a) α = 0 and 0.r→ 0. Then σ((0.r)↓) = σ(0) = 0 = 0↓
A

= (
∑0
i=1 r)↓

A
= σ(0.r)↓

A
.

(b) α = 1 and 1.r → r. Then σ((1.r)↓) = σ(r↓). By the induction hypothesis σ(r)↓
A
. σ(r↓) and

notice that σ(r)↓
A

= (
∑1
i=1 σ(r))↓

A
= σ(1.r)↓

A
.

(c) r = 0 and α.0→ 0. Then σ((α.0)↓) = σ(0) = 0 = (
∑bαc
i=1 0)↓

A
= (σ(α.0))↓

A
.

(d) r = β.u and α.β.u → α × β.u. Then σ(α.β.u)↓
A

= (
∑bαc×bβc
i=1 σ(u))↓

A
. (
∑bα×βc
i=1 σ(u))↓

A
=

σ(α× β.u)↓
A
which by the induction hypothesis is . than σ(α× β.u↓) = σ((α.β.u)↓).

(e) r = u1 + u2 and α.(u1 + u2)→ α.u1 + α.u2. Then σ(α.(u1 + u2))↓
A

= (
∑bαc
i=1 σ(u1 + u2))↓

A
=

(
∑bαc
i=1 σ(u1) +

∑bαc
i=1 σ(u2))↓

A
= σ(α.u1 + α.u2)↓

A
, which by the induction hypothesis is .

than σ((α.u1 + α.u2)↓) and notice that this term is equal to σ((α.(u1 + u2))↓).

(f) α.t is in normal form. Then σ((α.t)↓) = σ(α.t) =
∑bαc
i=1 σ(t) and notice that σ(α.t)↓

A
=

(
∑bαc
i=1 σ(t))↓

A
.
∑bαc
i=1 σ(t).

6. t = r + u. Then σ(r + u)↓
A

= (σ(r) + σ(u))↓
A
which by Lemma E.5.2 is . than σ(r)↓

A
+σ(u)↓

A

which by the induction hypothesis is . than σ(r↓) + σ(u↓) = σ(r↓ +u↓). If r↓ +u↓ is in normal
form, then due to the confluence of λCA, it is equal to (r + u)↓, and then we are done. In other
case, it means that r↓ +u↓ reduces. Cases:

(a) u↓= 0, then (r + u)↓= r↓. Then σ(r↓) + σ(u↓) = σ(r↓) + 0 . σ(r↓) = σ((r + u)↓).
(b) r↓= α.u and u↓= β.u, then (r + u)↓= (α + β).u. So σ(r↓) + σ(u↓) = σ(α.u) + σ(β.u) =∑bαc

i=1 u +
∑bβc
i=1 u =

∑bαc+bβc
i=1 u .

∑bα+βc
i=1 u = σ((α+ β).u) = σ((r + u)↓).

(c) The case where r↓= α.u and u↓= u and the case r↓= u↓ are analogous to the previous one.

7. t = (r) u. Then σ((r) u)↓
A

= ((σ(r)) σ(u))↓
A
. Case by case on the possible one-step →-reductions

starting from (r) u

(a) ((r) u) ↓= (r ↓) u ↓ Then σ(((r) u) ↓) = (σ(r ↓)) σ(u ↓). On the other hand, due to the
confluence in λadd, ((σ(r)) σ(u))↓

A
= ((σ(r)↓

A
) σ(u)↓

A
)↓
A
and since this is the normal form of

(σ(r)↓
A

) σ(u)↓
A
, by definition, ((σ(r)↓

A
) σ(u)↓

A
)↓
A
. (σ(r)↓

A
) σ(u)↓

A
, which by the induction

hypothesis is . to (σ(r↓)) σ(u↓).
(b) r = r1 + r2, and (r) u → (r1) u + (r2) u. Notice that σ((r1 + r2) u) ↓

A
is equal to

((σ(r1) + σ(r2)) σ(u))↓
A

= ((σ(r1)) σ(u) + (σ(r2)) σ(u))↓
A
which by Lemma E.5.2 is . than

((σ(r1)) σ(u))↓
A

+((σ(r2)) σ(u))↓
A

= (σ((r1) u))↓
A

+(σ((r2) u))↓
A

which by the induction
hypothesis is . than σ(((r1) u)↓) + σ(((r2) u)↓) = σ(((r1) u)↓ +((r2) u)↓). Cases:
i. ((r1) u)↓ +((r2) u)↓= ((r1) u + (r2) u)↓. Then the term σ(((r1) u)↓ +((r2) u)↓) is equal

to σ((((r1) u) + ((r2) u))↓) = σ(((r1 + r2) u)↓).
ii. ((r1) u)↓= 0. Then σ(((r1) u)↓ +((r2) u)↓) = 0 + σ(((r2) u)↓). Notice that the term

(0 + σ(((r2) u)↓)) ↓
A

is equal to σ(((r2) u)↓) ↓
A
, so 0 + σ(((r2) u)↓) . σ(((r2) u)↓) =

σ((0 + (r2) u)↓) = σ((((r1) u)↓ +(r2) u)↓), which due to the confluence of λCA is equal
to σ(((r1) u + (r2) u)↓) = σ(((r1 + r2) u)↓).

iii. ((r1) u) ↓= α.u and ((r2) u) ↓= β.u. So σ(((r1) u) ↓ +((r2) u) ↓) = σ(α.u + β.u) =∑bαc
i=1 σ(u) +

∑bβc
i=1 σ(u) =

∑bαc+bβc
i=1 σ(u) which is . than

∑bα+βc
i=1 σ(u) = σ((α+β).u) =

σ(((r1) u + (r2) u)↓) = σ(((r1 + r2) u)↓).
iv. The cases where ((r1) u)↓= α.u and ((r2) u)↓= u or ((r1) u)↓= u and ((r2) u)↓= u are

analogous to the previous one.
(c) u = u1 + u2 and (r) u→ (r) u1 + (r) u2. Analogous to the previous case.
(d) r = α.r′ and (r) u → α.(r′) u. Then the term σ((α.r′) u)↓

A
is equal to ((σ(α.r′)) σ(u))↓

A

which is equal to ((
∑bαc
i=1 σ(r′)) σ(u))↓

A
= ((

∑bαc
i=1 σ(r′)) σ(u))↓

A
and this, by Lemma E.5.2, is

. than
∑bαc
i=1 ((σ(r′)) σ(u))↓

A
=
∑bαc
i=1 σ((r′) u)↓

A
which by the induction hypothesis is . than∑bαc

i=1 σ(((r′) u)↓) = σ(α.((r′) u)↓). Cases:
i. α.((r′) u)↓= ((α.r′) u)↓. Then σ(α.((r′) u)↓) = σ(((α.r′) u)↓) = σ(((α.r′) u)↓).

146

Appendix E. Proofs from Chapter 6

ii. α = 0, so σ(0.((r′) u)↓) =
∑0
i=1 σ(((r′) u)↓) = 0 = σ(0) = ((0.r′) u)↓.

iii. α = 1 so σ(1.((r′) u)↓) =
∑1
i=1 σ(((r′) u)↓) = σ(((r′) u)↓) = σ(((1.r′) u)↓).

iv. ((r′) u)↓= 0, so σ(α.((r′) u)↓) = σ(α.0) =
∑bαc
i=1 0, since its normal form in λadd is 0, it is

. than 0 = σ(0) = σ(((α.r′) u)↓).
v. ((r′) u)↓= β.u, so σ(α.((r′) u)↓) = σ(α.β.u) =

∑bαc
i=1

∑bβc
i=1 σ(u) =

∑bαc×bβc
i=1 σ(u) which

is . than
∑bα×βc
i=1 σ(u) = σ(α× β.u) = σ(((α.r′) u)↓).

vi. ((r′) u)↓= u+t, so σ(α.((r′) u)↓) = σ(α.(u+t)) =
∑bαc
i=1 σ(u+t) =

∑bαc
i=1(σ(u)+σ(t)) =∑bαc

i=1 σ(u) +
∑bαc
i=1 σ(t) = σ(α.u) + σ(α.t) = σ(α.u + α.t) = σ((α.(r′) u)↓).

(e) u = α.u′ and (r) u→ α.(r) u′. Analogous to the previous case.
(f) r = 0 and (r) u→ 0. σ((0) u)↓

A
= ((0) σ(u))↓

A
= 0 = σ(0) = σ(((0) u)↓).

(g) u = 0 and (r) u→ 0. Analogous to the previous case.
(h) r = λx : U.r′, u is a base term and (r) u→ r′[u/x]. Notice that σ((λx : U.r′) u)↓

A
is equal to

((λx : U.σ(r′)) σ(u))↓
A

= (σ(r′)[σ(u)/x])↓
A
, which by Lemma E.5.1 is equal to σ(r′[u/x])↓

A
. If

we prove that this term is . than σ((r′[u/x])↓) = σ(((λx : U.r′) u)↓) then we are done. Let us
prove it by structural induction over r′, assuming σ(r′)↓

A
. σ(r′↓) and σ(u)↓

A
. σ(u↓), which

are true by the induction hypothesis.
i. r′ = x, then σ(x[u/x])↓

A
= σ(u)↓

A
. σ(u↓) = σ((x′[u/x])↓).

ii. r′ = y or r′ = 0, then σ(r′[u/x])↓
A

= σ(r′)↓
A
. σ(r′↓) = σ((r′[u/x])↓).

iii. r′ = λy : V.r′′. Then σ((λy : V.r′′)[u/x])↓
A

= λy : V.σ(r′′[u/x])↓
A
which by the induction

hypothesis is . than λy : V.σ(r′′[u/x]↓) = σ(λy : V.r′′[u/x]↓).
iv. r′ = ΛY.r′′. Then σ((ΛY.r′′)[u/x])↓

A
= ΛY.σ(r′′[u/x])↓

A
which by the induction hypothesis

is . than ΛY.σ(r′′[u/x]↓) = σ(ΛY.r′′[u/x]↓).
v. r′ = (t1) t2. Notice that σ(((t1) t2)[u/x])↓

A
= ((σ(t1[u/x])) σ(t2[u/x]))↓

A
. Cases:

A. ((t1[u/x]) t2[u/x])↓= (t1[u/x]↓) t2[u/x]↓. Since the terms ((σ(t1[u/x]))σ(t2[u/x]))↓
A

and (σ(t1[u/x]) ↓
A
σ(t2[u/x])) ↓

A
have the same normal form, by definition of .,

one has ((σ(t1[u/x])) σ(t2[u/x]))↓
A
. (σ(t1[u/x])↓

A
σ(t2[u/x]))↓

A
, which by the in-

duction hypothesis is . than (σ(t1[u/x]↓)) σ(t2[u/x]↓) = σ(t1[u/x]↓ t2[u/x]↓) =
σ(((t1[u/x]) t2[u/x])↓).

B. t1[u/x] = t11
+ t12

, so ((t1[u/x]) t2[u/x])↓= ((t11
) t2[u/x] + (t12

) t2[u/x])↓. This
case is analogous to case 7b.

C. t2[u/x] = t21 + t22 , so ((t1[u/x]) t2[u/x])↓= ((t1[u/x]) t21 + (t1[u/x]) t22)↓. Analo-
gous to previous case.

D. t1[u/x] = α.t′1 or t2[u/x] = α.t′2, so ((t1[u/x]) t2[u/x])↓ is equal to (α.(t′1) t2[u/x])↓.
This cases are analogous to case 7d.

E. t1[u/x] = 0 or t2[u/x] = 0, so ((t1[u/x]) t2[u/x])↓= 0. This cases are analogous to
case 7f.

F. t1[u/x] = λy : V.t′1 and t2[u/x] is a base term, let us call it b, then the term
((t1[u/x]) t2[u/x])↓= t′1[b/y]↓. Then σ((λy : V.t′1) b)↓

A
= ((λy : V.σ(t′1)) σ(b))↓

A
=

(σ(t′1)[σ(b)/y])↓
A
, which by Lemma E.5.1 is equal to σ(t′1[b/y])↓

A
which by the in-

duction hypothesis is . than σ((t′1[b/y])↓) = σ(((t1[u/x]) t2[u/x])↓).
vi. r′ = r′′@V . Then σ(r′′@V [u/x])↓

A
= σ(r′′[u/x])↓

A
@V which by the induction hypothesis

is . than σ(r′′[u/x]↓)@V = σ(r′′@V [u/x]↓).
vii. r′ = α.r′′. Case by case on the possible one-step→-reductions starting from (α.r′′)[u/x] =

α.r′′[u/x].
A. α = 0, so 0.r′′[u/x] → 0. Notice that σ((0.r′′[u/x]) ↓) = σ(0) = 0 = 0 ↓

A
=

(
∑0
i=1 r

′′[u/x])↓
A

= σ(0.r′′[u/x])↓
A
.

B. α = 1, so 1.r′′[u/x]→ r′′[u/x]. Then σ((1.r′′[u/x])↓) is equal to σ(r′′[u/x]↓). On the
other hand, by the induction hypothesis σ(r′′[u/x])↓

A
. σ(r′′[u/x]↓) and notice that

σ(r′′[u/x])↓
A

= (
∑1
i=1 σ(r′′[u/x]))↓

A
= σ(1.r′′[u/x])↓

A
.

C. r′′[u/x] = 0, so α.r′′[u/x] → 0. Then σ(α.r′′[u/x]↓) = σ(0) = 0 = (
∑bαc
i=1 σ(0))↓

A
=

σ(α.r′′[u/x])↓
A
.

147

Appendix E. Proofs from Chapter 6

D. r′′[u/x] = β.t1, so α.r′′[u/x]→ α×β.t1. Then σ(α.r′′[u/x])↓
A

= (
∑bαc×bβc
i=1 σ(t1))↓

A
.

(
∑bα×βc
i=1 σ(t1))↓

A
= σ(α× β.t1)↓

A
which is . than σ((α× β.t1)↓) by the induction

hypothesis. Notice that σ((α× β.t1)↓) = σ((α.r′′[u/x])↓).
E. r′′[u/x] = t1 + t2, so α.r′′[u/x] → α.t1 + α.t2. Since u is a base term we can

assume r′ = t′1 + t′2 with t′1[u/x] = t1 and t′2[u/x] = t2. Then σ(α.r′′[u/x])↓
A

=

(
∑bαc
i=1 σ(t1 + t2))↓

A
= (
∑bαc
i=1 σ(t1) +

∑bαc
i=1 σ(t2))↓

A
= σ(α.t1 + α.t2)↓

A
which is equal

to σ((α.t′1 + α.t′2)[u/x])↓
A
, and this, by the induction hypothesis is . than the term

σ((α.t′1 + α.t′2)[u/x]↓) = σ((α.r′′[u/x])↓).
F. α.r′′[u/x] is in normal form. Then we have σ((α.r′′[u/x]) ↓) = σ(α.r′′[u/x]) =∑bαc

i=1 σ(r′′[u/x]), and note that σ(α.r′′[u/x]) ↓
A

= (
∑bαc
i=1 σ(r′′[u/x])) ↓

A
and this is

. than
∑bαc
i=1 σ(r′′[u/x]).

viii. r′ = t1 + t2. Then σ((t1 + t2)[u/x]) ↓
A

= (σ(t1[u/x]) + σ(t2[u/x])) ↓
A

which is, by
Lemma E.5.2, . than σ(t1[u/x])↓

A
+σ(t2[u/x])↓

A
which by the induction hypothesis

is . than σ(t1[u/x]↓) + σ(t2[u/x]↓) = σ(t1[u/x]↓ +t2[u/x]↓). If t1[u/x]↓ +t2[u/x]↓ is in
normal form, then due to the confluence of λCA, it is equal to (t1 + t2)[u/x]↓, and then
we are done. In other case, it means that t1[u/x]↓ +t2[u/x]↓ reduces. Cases:
A. t2[u/x]↓= 0, then (t1[u/x] + t2[u/x])↓= t1[u/x]↓. Then σ(t1[u/x]↓) + σ(t2[u/x]↓) =

σ(t1[u/x]↓) + 0 . σ(t1[u/x]↓) = σ((t1[u/x] + t2[u/x])↓).
B. t1[u/x]↓= α.t′1 and t2[u/x]↓= β.t′1. Then (t1 + t2)[u/x]↓= (α+ β).t′1. So σ(t1[u/x]↓

)+σ(t2[u/x]↓) = σ(α.t′1)+σ(β.t′1) =
∑bαc
i=1 t

′
1+
∑bβc
i=1 t

′
1 =

∑bαc+bβc
i=1 t′1 .

∑bα+βc
i=1 t′1 =

σ((α+ β).t′1) which is equal to σ((t1 + t2)[u/x]↓).
C. The case where t1[u/x]↓= α.t′1 and t2[u/x]↓= t′1 and the case t1[u/x]↓= t2[u/x]↓ are

analogous to the previous one.
�

E.6 Proof of Lemma 6.4.3

Lemma 6.4.3 (Typing preservation). For any context Γ, term t and type T , if Γ ` t : T then Γ À σ(t) : T

Proof. We proceed by induction on the derivation of Γ ` t : T .

• Γ, x : U ` x : U as a consequence of rule ax. Notice that σ(x) = x and by rule ax in λadd we have
Γ, x : U À x : U .

• Γ ` 0 : 0 as a consequence of rule ax0. Notice that σ(0) = 0 and by rule ax0 in λadd we have
Γ À 0 : 0.

• Γ ` (t) r :
∑n
i=1(m.Ti) as a consequence of Γ ` t :

∑n
i=1(U → Ti), Γ ` r : m.U and rule →E . Then

by the induction hypothesis Γ À σ(t) :
∑n
i=1(U → Ti), Γ À σ(r) : m.U and so, by rule →E in λadd

we have Γ À (σ(t)) σ(r) :
∑n
i=1(m.Ti). Notice that (σ(t)) σ(r) = σ((t) r).

• Γ ` λx : U.t : U → T as a consequence of Γ, x : U ` t : T and rule →I . Then by the induction
hypothesis Γ, x : U À σ(t) : T and so, by rule→I in λadd we have Γ À λx : U.σ(t) : U → T . Notice
that λx : U.σ(t) = σ(λx : U.t).

• Γ ` t@V : U [V/X] as a consequence of Γ ` t : ∀X.U and rule ∀E . Then by the induction
hypothesis Γ À σ(t) : ∀X.U and so, by rule ∀E in λadd we have Γ À σ(t)@V : U [V/X]. Notice
that σ(t)@V = σ(t@V).

• Γ ` ΛX.t : ∀X.U where X /∈ FV (Γ) as a consequence of Γ ` t : U and rule ∀I . Then by the
induction hypothesis Γ À σ(t) : U and so, by rule ∀I in λadd we have Γ ` ΛX.σ(t) : ∀X.U . Notice
that ΛX.σ(t) = σ(ΛX.t).

• Γ ` t + r : T + R as a consequence of Γ ` t : T , Γ ` r : R and rule →I . Then by the induction
hypothesis Γ À σ(t) : T and Γ À σ(r) : R and so, by rule +I in λadd we have Γ À σ(t)+σ(r) : T+R.
Notice that σ(t) + σ(r) = σ(t + r).

148

Appendix E. Proofs from Chapter 6

• Γ ` α.t : bαc.T as a consequence of Γ ` t : T and rule sI. Then by the induction hypothesis
Γ À σ(t) : T . Cases:

– If α ≥ 2, then by rule +I bαc-times, we have Γ À

∑bαc
i=1 σ(t) : T . Notice that

∑bαc
i=1 σ(t) =

σ(α.t).

– If 1 ≤ α ≤ 2, then notice that σ(t) =
∑1
i=1 σ(t) = σ(α.t).

– If α ≤ 1, then notice that σ(α.t) = 0 and by rule ax0, Γ À 0 : 0.T .
�

149

Appendix E. Proofs from Chapter 6

150

Appendix F

Proofs from Chapter 7

F.1 Proof of Corollary 7.2.3
Corollary 7.2.3 (Base terms). If Γ ` b :T , then exists V such that Γ ` b :V and V � T .

Proof. Structural induction on b.

b = x: Then by 7.2.2(1), ∃V and ∆ such that V � T and Γ = ∆ ∪ {x : V }. Then by rule ax, Γ ` x :V .

b = λx : U.t: Then by 7.2.2(4), ∃R such that Γ, x :U ` t :R, with U → R � T . Then by rule →I ,
Γ ` λx : U.t :U → T .

b = ΛX.b′: Then by Lemma 7.2.2(7), X /∈ FV (Γ), and ∃〈U〉
n
, 〈α〉

n
such that Γ ` b′ :

∑n
i=1 αi.Ui and∑n

i=1 αi.∀X.U � T . By the induction hypothesis ∃V such that Γ ` b′ : V and V �
∑n
i=1 αi.Ui.

Then by rule ∀I , Γ ` ΛX.b′ :∀X.V . Notice that ∀X.V �
∑n
i=1 αi.∀X.Ui � T .

�

F.2 Proof of Theorem 7.2.1
Theorem 7.2.1 (Subject reduction). For any terms t, t′, any context Γ and any type T , if t→ t′ then
Γ ` t :T ⇒ Γ ` t′ :T .

Proof. We proceed by checking that every reduction rule preserves the type. Let t→ r and Γ ` t :T . To
show that Γ ` r :T , we proceed by induction on the derivation of t→ r.

Elementary rules

rule 0.t→ 0: Let Γ ` 0.t :T . Then by Lemma 7.2.2(6), ∃R such that 0.R � T and Γ ` t :R. Then
by rule ax0, Γ ` 0 : 0.R. We conclude using rule �.

rule 1.t→ t: Let Γ ` 1.t :T . Then by Lemma 7.2.2(6), ∃R such that 1.R � T and Γ ` t :R. Since
R � 1.R � T , we conclude using rule �.

rule α.0→ 0: Let Γ ` α.0 :T . Then by Lemma 7.2.2(6), ∃R such that Γ ` 0 :R and α.R � T . By
Lemma 7.2.2(2), ∃S and t such that 0.S � R and Γ ` t :S. Then 0.S = (α× 0).S � α.(0.S) �
α.R � T . So, by rule ax0, Γ ` 0 : 0.S, and by rule �, Γ ` 0 :T .

rule α.(β.t)→ (α× β).t: Let Γ ` α.(β.t) : T . Then by Lemma 7.2.2(6), ∃R such that α.R � T
and Γ ` β.t :R, and so, by Lemma 7.2.2(6) again, ∃S such that β.S � R and Γ ` t :S. Using
rule sI we can derive Γ ` (α × β).t : (α × β).S. Notice that (α × β).S � α.(β.S) � α.R � T ,
so we conclude using rule �.

rule α.(t + r)→ α.t + α.r: Let Γ ` α.(t+ r) :T . Then by Lemma 7.2.2(6), ∃R such that α.R � T
and Γ ` t + r :R. Then by Lemma 7.2.2(5), ∃S1 and S2 such that S1 + S2 � R, Γ ` t :S1 and
Γ ` r :S2. Then using rule sI , one has Γ ` α.t :α.S1 and Γ ` α.r :α.S2, from where, using rule
+I , one can derive Γ ` α.t+α.r :α.S1+α.S2. Notice that α.S1+α.S2 � α.(S1+S2) � α.R � T ,
so we conclude by rule �.

151

Appendix F. Proofs from Chapter 7

rule t + 0→ t: Let Γ ` t + 0 :T . Then by Lemma 7.2.2(5), ∃R1 and R2 such that R1 + R2 � T ,
Γ ` t :R1 and Γ ` 0 :R2. By Lemma 7.2.2(2), ∃S such that 0.S � R2. Notice that R1 �
R1 + 0.S � R1 +R2 � T , so we conclude using rule �.

Factorisation rules

rule α.t + β.t→ (α+ β).t: Let Γ ` α.t + β.t :T . By Lemma 7.2.2(5), there exist T1 and T2 such
that Γ ` α.t : T1 and Γ ` β.t : T2, where T1 + T2 � T . Then by Lemma 7.2.2(6), there exist
R1 and R2 such that Γ ` t :R1 and Γ ` t :R2, with α.R1 � T1 and β.R2 � T2. Since R1 and
R2 are both types for t, by Lemma 7.2.4 ∃S such that S � R1, S � R2, and Γ ` t :S. Using
sI , we obtain Γ ` (α+ β).t : (α+ β).S. Notice that (α + β).S � α.S + β.S � α.R1 + β.R2 �
T1 + T2 � T . We conclude with rule �.

rules α.t + t→ (α+ 1).t and rule t + t→ (1 + 1).t: Analogous to previous case.

Application rules

rule (t + r) u→ (t) u + (r) u: Let Γ ` (t + r) u :T , then by Lemma 7.2.2(3), ∃n, m, δ, k, 〈X〉
k
,

〈α〉n , 〈β〉m , U , 〈T 〉n , 〈V 〉m , 〈〈W 〉m+δ
〉m , where ∀Vj , ∃j1, . . . , jk / U〈[Wj/X]〉

k
= Vj , and such

that

Γ ` t + r :

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k and Γ ` u :

m∑
j=1

βj .Vj ,

with
n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k
� T.

Then by Lemma 7.2.2(5), ∃R and S such that

Γ ` t :R and Γ ` r :S,

with R+ S �
n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k .

Then ∃N1, N2 ⊆ {1, . . . , n}, such that

R �
∑

i∈N1\N2

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k +
∑

i∈N1∩N2

γi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k

and

S �
∑

i∈N2\N1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k +
∑

i∈N1∩N2

φi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k ,

where ∀i ∈ N1 ∩N2, γi + φi = αi.
First we give the bigger types to t and r, then we use →E to derive

Γ ` (t) u :
∑

i∈N1\N2

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

+
∑

i∈N1∩N2

m∑
j=1

γi × βj .Ti〈[Wj/X]〉
k

and

Γ ` (r) u :
∑

i∈N2\N1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

+
∑

i∈N1∩N2

m∑
j=1

φi × βj .Ti〈[Wj/X]〉
k
,

then we sum them up using rule +I , obtaining

Γ ` (t) u + (r) u :
∑

i∈N1\N2

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

+
∑

i∈N1∩N2

m∑
j=1

γi × βj .Ti〈[Wj/X]〉
k
+∑

i∈N2\N1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

+
∑

i∈N1∩N2

m∑
j=1

φi × βj .Ti〈[Wj/X]〉
k

152

Appendix F. Proofs from Chapter 7

Notice that this type is equivalent to
∑n
i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
� T . We conclude by

rule �.
rule (u) (t + r)→ (u) t + (u) r: Analogous to previous case.

rule (α.t) r→ α.(t) r: Let Γ ` (α.t) r :T . Then by Lemma 7.2.2(3), ∃n, m, δ, k, 〈X〉
k
, 〈α〉

n
, 〈β〉

m
,

U , 〈T 〉
n
, 〈V 〉

m
, 〈〈W 〉

m+δ
〉
m
, where ∀Vj , ∃j1, . . . , jk / U〈[Wj/X]〉

k
= Vj , and such that

Γ ` α.t :

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k and Γ ` u :

m∑
j=1

βj .Vj ,

with
n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k
� T.

Then by Lemma 7.2.2(6), ∃R such that

Γ ` t :R with α.R �
n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k .

Then, ∃〈γ〉m such that R �
∑n
i=1 γi.(〈∀X〉k .(U → Ti))@〈

∑m+δ
j=1 Wj〉k , where ∀i, α × γi = αi.

Taking the bigger type for t (by rule �), we can use →E to derive

Γ ` (t) r :

n∑
i=1

m∑
j=1

γi × βj .Ti〈[Wj/X]〉
k
.

And then, using sI ,

Γ ` α.(t) t :α.

n∑
i=1

m∑
j=1

γi × βj .Ti〈[Wj/X]〉
k
.

Notice that α.
∑n
i=1

∑m
j=1 γi × βj .Ti〈[Wj/X]〉

k
≡
∑n
i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
� T . We

conclude by rule �.
rule (r) (α.t)→ α.(r) t: Analogous to previous case.

rule (0) t→ 0: Let Γ ` (0) t :T . Then by Lemma 7.2.2(3), ∃n, m, δ, k, 〈X〉
k
, 〈α〉

n
, 〈β〉

m
, U , 〈T 〉

n
,

〈V 〉
m
, 〈〈W 〉

m+δ
〉
m
, where ∀Vj , ∃j1, . . . , jk / U〈[Wj/X]〉

k
= Vj , and such that

Γ ` 0 :

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k and Γ ` u :

m∑
j=1

βj .Vj ,

with
n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k
� T.

By Lemma 7.2.2(2), ∃R such that

0.R �
n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k .

Then ∃A ⊆ {1, . . . , n} such that

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k ≡
∑
i∈A

0.(〈∀X〉
k
.(U → Ti))@〈

m+δ∑
j=1

Wj〉k

Then by rule �,

Γ ` 0 :
∑
i∈A

0.(〈∀X〉
k
.(U → Ti))@〈

m+δ∑
j=1

Wj〉k

153

Appendix F. Proofs from Chapter 7

and so by rule →E ,

Γ ` (0) t :
∑
i∈A

m∑
j=1

0× βj .Ti〈[Wj/X]〉
k

Then by rule ax0, Γ ` 0 : 0.
∑
i∈A

∑m
j=1 0 × βj .Ti〈[Wj/X]〉

k
. Notice that 0.

∑
i∈A

∑m
j=1 0 ×

βj .Ti〈[Wj/X]〉
k
≡
∑n
i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
� T . We conclude by rule �.

rule (t) 0→ 0: Analogous to previous case.

Type-linearity rules

rule (α.t)@(
∑n
i=1 Ui)→ α.t@(

∑n
i=1 Ui): Let Γ ` (α.t)@(

∑n
i=1 Ui) : T . Then by Lemma 7.2.2(8),

∃〈V 〉
m
, X, 〈β〉

m
such that

Γ ` α.t :

m∑
j=1

βj .∀X.Vj and
m∑
j=1

βj .(∀X.Vj)@(

n∑
i=1

Ui) � T.

Then by Lemma 7.2.2(6), ∃S such that

Γ ` t :S and α.S �
m∑
j=1

βj .∀X.Vj .

By Lemma 7.1.2, S ≡
∑h
o=1 δo.∀X.Wo, so by rule �,

Γ ` t :

h∑
o=1

δo.Wo.

Thus, by Lemma 7.1.3, ∀o, ∃W ′o such that Wo ≡ ∀X.W ′o. So, using rule @I , we can derive

Γ ` t@(

n∑
i=1

Ui) :

h∑
o=1

δo.(∀X.W ′o)@(

n∑
i=1

Ui),

and using the rule sI on this sequent, we derive

Γ ` α.t@(

n∑
i=1

Ui) :α.

h∑
o=1

δo.(∀X.W ′o)@(

n∑
i=1

Ui).

Note that

α.

h∑
o=1

δo.(∀X.W ′o)@(

n∑
i=1

Ui) ≡
h∑
o=1

α× δo.(∀X.W ′o)@(

n∑
i=1

Ui)

and since
∑h
o=1 α × δo.∀X.W ′o ≡ α.S �

∑m
j=1 βj .∀X.Vj , by subtyping rules Cx+, Cxs, Cx@

and Tr,
h∑
o=1

α× δo.(∀X.W ′o)@(

n∑
i=1

Ui) �
m∑
j=1

βj .(∀X.Vj)@(

n∑
i=1

Ui) � T.

We conclude by rule �.
rule (t + r)@(

∑n
i=1 Ui)→ t@(

∑n
i=1 Ui) + r@(

∑n
i=1 Ui): Let Γ ` (t + r)@(

∑n
i=1 Ui) : T . Then by

Lemma 7.2.2(8), ∃〈V 〉
m
, X, 〈β〉

m
such that

Γ ` t + r :

m∑
j=1

βj .∀X.Vj and
m∑
j=1

βj .(∀X.Vj)@(

n∑
i=1

Ui) � T.

Then by Lemma 7.2.2(5), ∃S1, S2 such that

Γ ` t :S1, Γ ` r :S2 and S1 + S2 �
m∑
j=1

βj .∀X.Vj .

154

Appendix F. Proofs from Chapter 7

By Lemma 7.1.2, S1 ≡
∑h1

o=1 δ
1
o .W

1
o and S2 ≡

∑h2

o=1 δ
2
o .W

2
o . So, by Lemma 7.1.3, for i = 1, 2,

∀o, ∃W ′o
i such that W i

o ≡ ∀X.W ′o
i. Then, using rule @I ,

Γ ` t@(

n∑
i=1

Ui) :

h1∑
o=1

δ1
o .(∀X.W ′o

1
)@(

n∑
i=1

Ui) and Γ ` r@(

n∑
i=1

Ui) :

h2∑
o=1

δ2
o .(∀X.W ′o

2
)@(

n∑
i=1

Ui).

By rule +I ,

Γ ` t@(

n∑
i=1

Ui) + r@(

n∑
i=1

Ui) :

h1∑
o=1

δ1
o .(∀X.W ′o

1
)@(

n∑
i=1

Ui) +

h2∑
o=1

δ2
o .(∀X.W ′o

2
)@(

n∑
i=1

Ui).

Notice that, since

h1∑
o=1

δ1
o .∀X.W ′o

1
+

h2∑
o=1

δ2
o .∀X.W ′o

2 ≡ S1 + S2 �
m∑
j=1

βj .∀X.Vj ,

using Tr and Cx subtyping rules,

h1∑
o=1

δ1
o .(∀X.W ′o

1
)@(

n∑
i=1

Ui) +

h2∑
o=1

δ2
o .(∀X.W ′o

2
)@(

n∑
i=1

Ui) �
m∑
j=1

βj .(∀X.Vj)@(

n∑
i=1

Ui) � T.

We conclude by rule �.

Type-distributivity rule

rule ((〈ΛX〉
k
.〈λx : U〉n .t)@〈

∑m
i=1Wi〉k) 〈bV 〉

n
→ (〈λx : V 〉

n
.t〈[Wj/X]〉

k
) 〈b〉

n
:

Let Γ ` ((〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

∑m
i=1Wi〉k) 〈bV 〉

n
: T , where U〈[Wj/X]〉

k
= V . Then, by

Lemma 7.2.2(3), ∃pn, m′n, k′n, 〈δn〉
k′n , 〈Y

n〉
k′n , 〈α

n〉
pn
, 〈βn〉

m′n , U
′n, 〈Tn〉

pn
, 〈V ′n〉

m′n ,
〈〈W ′n〉

m′n+δn
〉
m′n , where ∀V

′
o
n, ∃o1, . . . , ok′n / U ′n〈[W ′o

n
/Y n]〉

k′n = V ′o
n, and such that

Γ ` ((〈ΛX〉
k
.〈λx : U〉n .t)@〈

m∑
i=1

Wi〉k) 〈b〉n−1 :

pn∑
j=1

αnj .(〈∀Y n〉k′n .(U
′n → Tni))@〈

m′n+δn∑
o=1

W ′o
n〉
k′n ,

Γ ` bn :

m′n∑
o=1

βno .V
′
o
n and

pn∑
j=1

m′n∑
o=1

αnj × βno .Tni 〈[W ′o
n
/Y n]〉

k′n � T

Using the same Lemma, we get for i = 2, . . . , n−1, ∃pi, m′i, k′i, 〈δi〉
k′i

, 〈Y i〉
k′i

, 〈αi〉
pi
, 〈βi〉

m′i
,

U ′
i, 〈T i〉

pi
, 〈V ′i〉

m′i
, 〈〈W ′i〉

m′i+δi
〉
m′i

, where ∀V ′o
i, ∃o1, . . . , ok′i / U ′

i〈[W ′o
i
/Y i]〉

k′i
= V ′o

i, and
such that

Γ ` ((〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

m∑
i=1

Wi〉k) 〈b〉
n−1

:

pi∑
j=1

αij .(〈∀Y i〉k′i .(U
′i → T ii))@〈

m′i+δi∑
o=1

W ′o
i〉
k′i
,

Γ ` bi :

m′i∑
o=1

βio.V
′
o
i and

pi∑
j=1

m′i∑
o=1

αij×βio.T ii 〈[W ′o
i
/Y i]〉

k′i
�
pi+1∑
j=1

αi+1
j .(〈∀Y i+1〉

k′i+1 .(U
′i+1→ T i+1

i))@〈
m′i+1+δi+1∑

o=1

W ′o
i+1〉

k′i+1 .

Then, one more time the same Lemma from i = 2, we end with ∃p, m′, k′, 〈δ〉
k′ , 〈Y 〉k′ , 〈α〉p ,

〈β〉
m′ , U

′, 〈T 〉
p
, 〈V ′〉

m′ , 〈〈W
′〉
m′+δ〉m′ , where ∀V

′
o , ∃o1, . . . , ok′ / U ′〈[W ′o/Y]〉

k′ = V ′o , and such
that

Γ ` (〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

m∑
i=1

Wi〉k :

p∑
j=1

αj .(〈∀Y 〉k′ .(U
′ → Ti))@〈

m′+δ∑
o=1

W ′o〉k′ ,

155

Appendix F. Proofs from Chapter 7

Γ ` b1 :

m′∑
o=1

βo.V
′
o and

p∑
j=1

m′∑
o=1

αj × βo.Ti〈[W ′o/Y]〉
k′ �

p2∑
j=1

α2
j .(〈∀Y 2〉

k′2
.(U ′

2 → T 2
i))@〈

m′2+δ2∑
o=1

W ′o
2〉
k′2
.

By Lemma 7.2.2(4) k-times, and using rule � and Lemma 7.1.3, we have that ∃〈γ〉r , 〈Z〉k and
〈U ′′〉

r
such that

Γ ` 〈ΛX〉
k
.〈λx : U〉

n
.t :

r∑
g=1

γg.〈∀Z〉k .U ′′g and

r∑
g=1

γg.(〈∀Z〉k .U ′′g)@〈
m∑
j=1

Wi〉k �
p∑
j=1

αj .(〈∀Y 〉k′ .(U
′ → Ti))@〈

m′+δ∑
o=1

W ′o〉k′ .

By Corollary 7.2.3, ∃V ′′ such that

Γ ` 〈ΛX〉
k
.〈λx : U〉

n
.t :V ′′ and V ′′ �

r∑
g=1

γg.〈∀Z〉k .U ′′g .

Then, by Lemma 7.1.3, ∃V ′′′ such that V ′′ ≡ 〈∀Z〉
k
.V ′′′. Now, by Lemma 7.2.2(7), k-times,

and using rule � and Lemma 7.1.3, we have that ∃〈U ′′′〉
n′ , 〈α

′〉
n′ such that 〈X〉

k
/∈ FV (Γ), and

Γ ` 〈λx : U〉
n
.t :

n′∑
f=1

α′f .U
′′′
f and

n′∑
f=1

α′f .〈∀X〉k .U ′′′f � 〈∀Z〉k .V ′′′.

By Corollary 7.2.3, ∃U iv such that

Γ ` 〈λx : U〉
n
.t :U iv and U iv �

n′∑
f=1

α′f .U
′′′
f .

By Lemma 7.2.2(4), n-times, ∃R such that

Γ, 〈x : U〉
n
` t :R and 〈U〉

n
→ R � U iv.

By Lemma 7.2.4, there is a principal type for t in the context Γ, 〈x : U〉n . Chose R to be the
principal type (if it is not, just take R′ � R).
By rule →I , n-times and Lemma 7.2.5,

Γ〈[Wj/X]〉
k
` 〈λx : U〉n〈[Wj/X]〉

k
.t〈[Wj/X]〉

k
: (〈U〉n → R)〈[Wj/X]〉

k

However notice that since 〈X〉
k
/∈ FV (Γ), Γ〈[Wj/X]〉

k
= Γ. In addition ∀h, Uh〈[Wj/X]〉

k
= Vh,

so we can write this sequent as

Γ ` 〈λx : V 〉
n
.t〈[Wj/X]〉

k
: 〈V 〉

n
→ R〈[Wj/X]〉

k
.

By hypothesis of the reduction rule, ∀h, Γ ` bh :Vh. So, using rule →E , n-times,

Γ ` (〈λx : V 〉n .t〈[Wj/X]〉
k
) 〈b〉n :R〈[Wj/X]〉

k
.

We must show that R〈[Wj/X]〉
k
� T .

Notice that using →I , ∀I and @I it is possible to derive

Γ ` (〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

m∑
j=1

Wi〉k : (〈∀X〉
k
.(U → R))@〈

m∑
j=1

Wi〉k .

156

Appendix F. Proofs from Chapter 7

Then, since ∀h,Γ ` bh :Vh, using →E ,

Γ ` ((〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

m∑
j=1

Wi〉k) 〈b〉
n

:R〈[Wj/X]〉
k
.

Then by Lemma 7.2.4, ∃S such that S � R〈[Wj/X]〉
k
and also S � T . Notice that if we

show that the only possible S is R〈[Wj/X]〉
k
, we are done since it would be R〈[Wj/X]〉

k
� T .

Consider S is not R〈[Wj/X]〉
k
, then R〈[Wj/X]〉

k
cannot be the principal type of t〈[Wj/X]〉

k
,

which is an absurd since we chose R to be the principal type.

Beta reduction

rule (λx : U.t) b→ t[b/x]: Let Γ ` (λx : U.t) b :T . Then by Lemma 7.2.2(3), ∃n, m, δ, k, 〈X〉
k
,

〈α〉
n
, 〈β〉

m
, U ′, 〈T 〉

n
, 〈V 〉

m
, 〈〈W 〉

m+δ
〉
m
, where ∀Vj , ∃j1, . . . , jk / U ′〈[Wj/X]〉

k
= Vj , and such

that

Γ ` λx : U.t :

n∑
i=1

αi.(〈∀X〉k .(U ′ → Ti))@〈
m+δ∑
j=1

Wj〉k ,

Γ ` b :

m∑
j=1

βj .Vj and
n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k
� T.

By Corollary 7.2.3, ∃V ′ such that

Γ ` λx : U.t :V ′ and V ′ �
n∑
i=1

αi.(〈∀X〉k .(U ′ → Ti))@〈
m+δ∑
j=1

Wj〉k

Then there exists a partition {Nr} of {1, . . . , n} such that ∀r, if r1, r2 ∈ Nr, Tr1 ≡ Tr2
and ∃r′ / ∀i ∈ Nr′ , V ′ ≡ (〈∀X〉

k
.(U ′ → Ti))@〈

∑m+δ
j=1 Wj〉k ,

∑
i∈Nr′

αi = 1 and ∀r 6= r′,∑
i∈Nr α1 = 0. Then for any i ∈ Nr′ , by rule � one has

Γ ` λx : U.t : (〈∀X〉
k
.(U ′ → Ti))@〈

m+δ∑
j=1

Wj〉k .

Then by Lemma 7.2.2(4), ∃R such that

Γ, x :U ` t :R and U → R � (〈∀X〉
k
.(U ′ → Ti))@〈

m+δ∑
j=1

Wj〉k .

Then notice that ∀i, m + δi = 1, and since Γ ` b :
∑m
j=1 βj .Vj , then m = 1 and δi = 0.

So, by Corollary 7.2.3, ∃W ′ such that W ′ � β1.V1, and so β1 = 1. Then using rule �
we can derive Γ ` b : V1. Notice that for any i′ ∈ Nr′ , (

∑
i∈Nr′

αi × 1).Ti′〈[W1/X]〉
k
�∑n

i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
. Thus, in order to simplify notation, we write W1i = Wi and

V1 = V . Then, since
∑
i∈Nr′

αi × 1 = 1, we have

∀i ∈ Nr′ , Ti〈[W/X]〉
k
� T.

Also, we have
U → R � (〈∀X〉

k
.(U ′ → Ti))@〈W 〉k ≡ V → Ti〈[W/X]〉

k
.

Then notice that the only possibility is U ≡ V and R � Ti〈[W/X]〉
k
. Then, using �,

Γ, x :U ` t :Ti〈[W/X]〉
k

and Γ ` b :U.

So by Lemma 7.2.5, Γ ` t[b/x] :Ti〈[W/X]〉
k
. We conclude by rule �.

157

Appendix F. Proofs from Chapter 7

rule (ΛX.t)@U → t[U/X]: Let Γ ` (ΛX.t)@U : T . Then by Lemma 7.2.2(8), ∃〈V 〉
n
, Y and 〈α〉

n

such that Γ ` ΛX.t :
∑n
i=1 αi.∀Y.Vi, and

∑n
i=1 αi.(∀Y.Vi)@U � T . Then by Lemma 7.2.2(7),

X /∈ FV (Γ) and ∃〈W 〉m and 〈β〉m such that Γ ` t :
∑m
j=1 βj .Wj and

∑m
j=1 βj .∀X.Wj �∑n

i=1 αi.∀Y.Vi. Then by Lemma 7.2.5, Γ[U/X] ` t[U/X] :
∑m
j=1 βj .Wj [U/X]. Since X /∈

FV (Γ), Γ[U/X] = Γ. In addition, notice that
∑m
j=1 βj .Wj [U/X] ≡

∑m
j=1 βj .(∀X.Wj)@U �∑n

i=1 αi.(∀Y.Vi)@U � T . Then, by rule �, Γ ` t[U/X] :T .

AC equivalences

Commutativity: Let Γ ` t + r :T . Then by Lemma 7.2.2(5), ∃R,S such that Γ ` t :R, Γ ` r :S
and R + S � T . Then by rule +I , Γ ` r + t :S + R. Notice that S + R ≡ R + S � T . We
conclude by rule �.

Associativity: Let Γ ` (t+ r) +u :T . Then by Lemma 7.2.2(5), ∃R,S such that Γ ` t+ r :R and
Γ ` u :S, with R + S � T . Then by Lemma 7.2.2(5), ∃R1, R2 such that Γ ` t :R1, Γ ` r :R2

and R1 +R2 � R. So, by using rule +I twice, we get Γ ` t + (r + u) :R1 + (R2 + S). Notice
that R1 + (R2 + S) ≡ (R1 +R2) + S � R+ S � T . We conclude by rule �.

Contextual rules Let t→ r and assume as induction hypothesis that for any context Γ and type T , if
Γ ` t :T then Γ ` r :T .

(t) u→ (r) u: Let Γ ` (t) u : T . Then by Lemma 7.2.2(3), ∃n, m, δ, k, 〈X〉
k
, 〈α〉

n
, 〈β〉

m
,

U ′, 〈T 〉
n
, 〈V 〉

m
, 〈〈W 〉

m+δ
〉
m
, where ∀Vj , ∃j1, . . . , jk / U ′〈[Wj/X]〉

k
= Vj , and such that

Γ ` t :
∑n
i=1 αi.(〈∀X〉k .(U ′ → Ti))@〈

∑m+δ
j=1 Wj〉k , Γ ` u :

∑m
j=1 βj .Vj and

∑n
i=1

∑m
j=1 αi ×

βj .Ti〈[Wj/X]〉
k
� T . Then by the induction hypothesis one has Γ ` r :

∑n
i=1 αi.(〈∀X〉k .(U ′ →

Ti))@〈
∑m+δ
j=1 Wj〉k , so using rules →E and �, we get Γ ` (r) u :T .

(u) t→ (u) r: Analogous to previous case.

t + u→ r + u: Let Γ ` t+u :T . Then by Lemma 7.2.2(5), ∃R,S such that Γ ` t :R and Γ ` u :S,
with R+S � T . Then by the induction hypothesis Γ ` r :R, so using rule +I , Γ ` r+u :R+S.
We conclude by rule �.

u + t→ u + r: Analogous to previous case.

α.t→ α.r: Let Γ ` α.t : T . Then by Lemma 7.2.2(6), ∃R such that Γ ` t :R and α.R � T . Then
by the induction hypothesis Γ ` r :R. So using rule sI , Γ ` α.r :α.R. We conclude by rule �.

λx.t→ λx.r: Let Γ ` λx.t :T . Then by Lemma 7.2.2(4), Γ, x :U ` t :R, with U → R � T . So, by
the induction hypothesis Γ, x :U ` r :R. Using rule →I , Γ ` λx.r :U → R. We conclude by
rule �.

ΛX.t→ ΛX.r: Let Γ ` ΛX.t :T . Then by Lemma 7.2.2(7), Γ ` t :
∑n
i=1 αi.Ui and

∑n
i=1 αi.∀X.U �

T . So, by the induction hypothesis Γ ` r :
∑n
i=1 αi.Ui. By rule ∀I , Γ ` ΛX.r :

∑n
i=1 αi.∀X.Ui.

We conclude by rule �.
t@(

∑n
i=1 Ui)→ r@(

∑n
i=1 Ui): Let Γ ` t@(

∑n
i=1 Ui) : T . By Lemma 7.2.2(8), ∃〈V 〉

m
, X 〈α〉

m
such

that Γ ` t :
∑m
j=1 αj .∀X.Vj and

∑m
j=1 αj .(∀X.Vj)@(

∑n
i=1 Ui) � T . The by the induction hy-

pothesis Γ ` r :
∑m
j=1 αj .∀X.Vj . By rule @I , Γ ` r@(

∑n
i=1 Ui) :

∑m
j=1 αj .(∀X.Vj)@(

∑n
i=1 Ui).

We conclude by rule �.
�

F.3 Proof of Lemma 7.3.1
Lemma 7.3.1. If T ≡ R, then ‖T‖ ≡ ‖R‖.

Proof. Case by case

• 1.T ≡ T . ‖1.T‖ = 1.‖T‖ ≡ ‖T‖.

• α.(β.T) ≡ (α× β).T . ‖α.(β.T)‖ = α.(β.‖T‖) ≡ (α× β).‖T‖ = ‖(α× β).T‖.

• α.T + α.R ≡ α.(T +R). ‖α.T + α.R‖ = α.‖T‖+ α.‖R‖ ≡ α.(‖T‖+ ‖R‖) = ‖α.(T +R)‖.

158

Appendix F. Proofs from Chapter 7

• α.T + β.T ≡ (α+ β).T . ‖α.T + β.T‖ = α.‖T‖+ β.‖T‖ ≡ (α+ β).‖T‖ = ‖(α+ β).T‖.

• T +R ≡ R+ T . ‖T +R‖ = ‖T‖+ ‖R‖ ≡ ‖R‖+ ‖T‖ = ‖R+ T‖.

• T + (R + S) ≡ (T + R) + S. ‖T + (R+ S)‖ = ‖T‖ + (‖R‖ + ‖S‖) ≡ (‖T‖ + ‖R‖) + ‖S‖ =
‖(T +R) + S‖.

• (∀X.U)@V ≡ U [V/X]. ‖(∀X.U)@V ‖ = ‖U [V/X]‖.
�

F.4 Proof of Lemma 7.3.2
Lemma 7.3.2.

1. ‖t[b/x]‖ = ‖t‖[‖b‖/x].

2. ‖T [W/X]‖ ≡ ‖T‖[‖W‖/X].

Proof.

1. Structural induction on t.

• t = x : U , then ‖(x : U)[b/x]‖ = ‖b‖ = x[‖b‖/x] = ‖x : U‖[‖b‖/x].
• t = y : U , then ‖(y : U)[b/x]‖ = ‖y : U‖ = y = y[‖b‖/x] = ‖y : U‖[‖b‖/x].
• t = 0, analogous to previous case.
• t = λy : U.r, then ‖(λy : U.r)[b/x]‖ = ‖λy : U.r[b/x]‖ = λy.‖r[b/x]‖, which by the induction

hypothesis is equal to λy.‖r‖[‖b‖/x] = ‖λy : U.r‖[‖b‖/x].
• t = ΛX.r, then ‖(ΛX.r)[b/x]‖ = ‖ΛX.r[b/x]‖ = ‖r[b/x]‖, which by the induction hypothesis

is equal to ‖r‖[‖b‖/x] = ‖ΛX.r‖[‖b‖/x].
• t = (r) u, then ‖((r) u)[b/x]‖ = ‖(r[b/x]) u[b/x]‖ = (‖r[b/x]‖) ‖u[b/x]‖, which by the induc-

tion hypothesis is equal to (‖r‖[‖b‖/x]) ‖u‖[‖b‖/x] = ((‖r‖) ‖u‖)[‖b‖/x] = ‖(r) u‖[‖b‖/x].
• t = r@(

∑n
i=1 Ui), then ‖(r@(

∑n
i=1 Ui))[b/x]‖ = ‖(r[b/x])@(

∑n
i=1 Ui)‖ = ‖(r[b/x])‖, which

by the induction hypothesis is equal to ‖r‖[‖b‖/x] = ‖r@(
∑n
i=1 Ui)‖[‖b‖/x].

• t = α.r, then ‖(α.r)[b/x]‖ = ‖α.r[b/x]‖ = α.‖r[b/x]‖, which by the induction hypothesis is
equal to α.‖r‖[‖b‖/x] = (α.‖r‖)[‖b‖/x] = ‖α.r‖[‖b‖/x].
• t = r+u, then ‖(r + u)[b/x]‖ = ‖r[b/x] + u[b/x]‖ = ‖r[b/x]‖+‖u[b/x]‖, which by the induc-

tion hypothesis is equal to ‖r‖[‖b‖/x] + ‖u‖[‖b‖/x] = (‖r‖+ ‖u‖)[‖b‖/x] = ‖r + u‖[‖b‖/x].

2. Structural induction on T

• T = X, then ‖X[W/X]‖ = ‖W‖ = X[‖W‖/X] = ‖X‖[‖W‖/X].
• T = Y , then ‖Y [W/X]‖ = ‖Y ‖ = Y = Y [‖W‖/X] = ‖Y ‖[‖Y ‖/X].
• T = U → R, then ‖(U → R)[W/X]‖ = ‖U [W/X]→ R[W/X]‖ = ‖U [W/X]‖ → ‖R[W/X]‖,

which by the induction hypothesis is equivalent to ‖U‖[‖W‖/X] → ‖R‖[‖W‖/X] = (‖U‖ →
‖R‖)[‖W‖/X] = ‖U → R‖[‖W‖/X].
• T = ∀Y.U , then ‖(∀Y.U)[W/X]‖ = ‖∀Y.U [W/X]‖ = ∀Y.‖U [W/X]‖, which by the induction

hypothesis is equivalent to ∀Y.‖U‖[‖W‖/X] = (∀Y.‖U‖)[‖W‖/X] = ‖∀Y.U‖[‖W‖/X].
• T = (∀X.U)@V , then by Lemma 7.3.1, ‖((∀Y.U)@V)[W/X]‖ ≡ ‖U [V/Y][W/X]‖, which by

the induction hypothesis is equivalent to ‖U [V/Y]‖[‖W‖/X] ≡ ‖∀X.U@V ‖[‖W‖/X].
• T = U@(

∑n
i=1 Vi), with U 6≡ ∀X.W or n > 1, then ‖U@(

∑n
i=1 Vi)[W/X]‖ is equal (after

doing the needed variable renaming) to ‖U [W/X]@(
∑n
i=1 Vi[W/X])‖ = ‖U [W/X]‖, which by

the induction hypothesis, is equivalent to ‖U‖[‖W‖/X] = ‖U@(
∑n
i=1 Vi)‖[‖W‖/X].

• T = α.R, then ‖(α.R)[U/X]‖ = ‖α.R[U/X]‖ = α.‖R[U/X]‖, which by the induction hypoth-
esis, is equivalent to α.‖R‖[‖W‖/X] = (α.‖R‖)[‖W‖/X] = ‖α.R‖[‖W‖/X].

• T = R + S, then ‖(R+ S)[W/X]‖ = ‖R[W/X] + S[W/X]‖ = ‖R[W/X]‖ + ‖S[W/X]‖,
which by the induction hypothesis is equivalent to ‖R‖[‖W‖/X] + ‖S‖[‖W‖/X] = (‖R‖ +
‖S‖)[‖W‖/X] = ‖R+ S‖[‖W‖/X].

�

159

Appendix F. Proofs from Chapter 7

F.5 Proof of Lemma 7.3.4
Lemma 7.3.4 (Reducibility preservation). If t→ r, then ‖t‖ →=

v ‖r‖. Moreover, if the reduction t→ r
is not the type application beta-reduction, the type-distributivity rule nor the type linearity rules, then
‖t‖ →v ‖r‖.

Proof. Rule by rule analysis.

Elementary rules

• Rule 0.t→ 0. ‖0.t‖ = 0.‖t‖ →v 0 = ‖0‖.
• Rule 1.t→ t. ‖1.t‖ = 1.‖t‖ →v ‖t‖.
• Rule α.0→ 0. ‖α.0‖ = α.‖0‖ = α.0→v 0 = ‖0‖.
• Rule α.(β.t)→ (α× β).t. ‖α.(β.t)‖ = α.(β.‖t‖)→v (α× β).‖t‖ = ‖(α× β).t‖.
• Rule α.(t + r)→ α.t + α.r. ‖α.(t + r)‖ = α.(‖t‖+ ‖r‖)→v α.‖t‖+ α.‖r‖ = ‖α.t + α.r‖.
• Rule t + 0→ t. ‖t + 0‖ = ‖t‖+ 0→v ‖t‖.

Factorisation rules

• Rule α.t + β.t→ (α+ β).t. ‖α.t + β.t‖ = α.‖t‖+ β.‖t‖ →v (α+ β).‖t‖ = ‖(α+ β).t‖.
• Rules α.t + t→ (α+ 1).t and t + t→ (1 + 1).t. Analogous to previous case.

Application rules

• Rule (t + r) u → (t) u + (r) u. ‖(t + r) u‖ = (‖t‖ + ‖r‖) ‖u‖ →v (‖t‖) ‖u‖ + (‖r‖) ‖u‖ =
‖(t) u + (r) u‖.
• Rule (u) (t + r)→ (u) t + (u) r. Analogous to previous case
• Rule (α.t) r→ α.(t) r. ‖(α.t) r‖ = (α.‖t‖) ‖r‖ →v α.(‖t‖) ‖r‖ = ‖α.(t) r‖.
• Rule (r) (α.t)→ α.(r) t. Analogous to previous case
• Rule (0) t→ 0. ‖(0) t‖ = (0) ‖t‖ →v 0 = ‖0‖.
• Rule (t) 0→ 0. Analogous to previous case

Beta reductions

• Rule (λx : U.t) b→ t[b/x]. ‖(λx : U.t) b‖ = (λx.‖t‖) ‖b‖. Since base vectors are translated
into base vectors, ‖b‖ is a base vector, and so the previous term →=

v -reduces to ‖t‖[‖b‖/x].
By Lemma 7.3.2, this is equal to ‖t[b/x]‖.

• Rule (ΛX.t)@U → t[U/X]. ‖(ΛX.t)@U‖ = ‖ΛX.t‖ = ‖t‖, which by Lemma 7.3.3 is equal to
‖t[U/X]‖.

Type-linearity rules

• Rule (α.t)@(
n∑
i=1

Ui) → α.t@(
n∑
i=1

Ui). ‖(α.t)@(
n∑
i=1

Ui)‖ = ‖α.t‖ = α.‖t‖ = α.‖t@(
n∑
i=1

Ui)‖ =

‖α.t@(
n∑
i=1

Ui)‖.

• Rule (t + r)@(
n∑
i=1

Ui)→ t@(
n∑
i=1

Ui) + r@(
n∑
i=1

Ui). ‖(t + r)@(
n∑
i=1

Ui)‖ = ‖t + r‖ = ‖t‖+ ‖r‖ =

‖t@(
n∑
i=1

Ui)‖+ ‖r@(
n∑
i=1

Ui)‖ = ‖t@(
n∑
i=1

Ui) + r@(
n∑
i=1

Ui)‖.

Type-distributivity rule

• Rule ((〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

∑m
i=1Wi〉k) 〈b〉

n
→ (〈λx : V 〉

n
.t〈[Wj/X]〉

k
) 〈b〉

n
.

‖((〈ΛX〉
k
.〈λx : U〉

n
.t)@〈

∑m
i=1Wi〉k) 〈b〉

n
‖ = (‖(〈ΛX〉

k
.〈λx : U〉

n
.t)@〈

∑m
i=1Wi〉k‖) 〈‖b‖〉n =

(〈λx〉
n
.‖t‖) 〈‖b‖〉

n
and using Lemma 7.3.3, this is equal to (‖〈λx : V 〉

n
.t〈[Wj/X]〉

k
‖) 〈‖b‖〉

n
=

‖(〈λx : V 〉n .t〈[Wj/X]〉
k
) 〈b〉n‖.

Contextual rules Let t → r and assume ‖t‖ →=
v ‖r‖. All the rules follow by translating and then

using the equivalent rule in Vectorial , analogously as the previous cases.
�

160

Appendix F. Proofs from Chapter 7

F.6 Proof of Lemma 7.3.5
Lemma 7.3.5 (Typability preservation). If Γ ` t :T , then ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖.

Proof. Induction on the last rule applied to derive Γ ` t :T .

1. ax
Γ, x :U ` x :U

Then, since unit types translate into unit types, by rule ax in Vectorial , we
have ‖Γ‖, x : ‖U‖ `v x : ‖U‖. Note that ‖x : U‖ = x.

2.
Γ ` t :T

0I
Γ ` 0 : 0.T

By the induction hypothesis ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖, so by rule 0I
in Vectorial , we have ‖Γ‖ `v 0 : 0.‖R‖ = ‖0.R‖. Notice that 0.R � 0.T . Also,
‖0‖ = 0.

3.
Γ, x :U ` t :T

→I
Γ ` λx : U.t :U → T

By the induction hypothesis ∃R � T such that ‖Γ‖, x : ‖U‖ `v ‖t‖ : ‖R‖,
then by rule →I in Vectorial , ‖Γ‖ `v λx.‖t‖ : ‖U‖ → ‖R‖. Notice that
‖U‖ → ‖R‖ = ‖U → R‖ and R � T ⇒ U → R � U → T . Also,
‖λx : U.t‖ = λx.‖t‖.

4.

Γ ` t :

n∑
i=1

αi.(〈∀X〉k .(U → Ti))@〈
m+δ∑
j=1

Wj〉k Γ ` r :

m∑
j=1

βj .Vj
∀Vj ,∃j1, . . . , jk /
U〈[Wj/X]〉

k
= Vj

→E

Γ ` (t) r :

n∑
i=1

m∑
j=1

αi × βj .Ti〈[Wj/X]〉
k

Then by the induction hypothesis there exists R �
∑n
i=1 αi.(〈∀X〉k .(U → Ti))@〈

∑m+δ
j=1 Wj〉k and

S �
∑m
j=1 βj .Vj such that ‖Γ‖ `v ‖t‖ : ‖R‖ and ‖Γ‖ `v ‖r‖ : ‖S‖. Using Lemmas 7.1.2 and 7.1.3,

we can consider, without lost of generality, R ≡
∑n
i=1 αi.(〈∀X〉k .(U → Ti))@〈

∑m+δ
j=1 Wj〉k and

S ≡
∑m
j=1 βj .Vj . Then, using Lemma 7.3.1, ‖R‖ ≡

∑n
i=1 αi.‖(〈∀X〉k .(U → Ti))@〈

∑m+δ
j=1 Wj〉k‖.

Cases:

• If ∀i, m + δi = 1, then δi = 0 and m = 1 and so ‖R‖ ≡
∑n
i=1 αi.‖V ‖ → ‖Ti‖〈[‖W1‖/X]〉

k

and ‖S‖ ≡ ‖β1.V1‖, so using rule →E in Vectorial , we obtain ‖Γ‖ `v (‖t‖) ‖r‖ :
∑n
i=1 αi ×

β1.‖Ti‖〈[‖W1‖/X]〉
k
.

• In other case, ‖R‖ ≡
∑n
i=1 αi.(〈∀X〉k .(‖U‖ → ‖Ti‖)) and ‖S‖ ≡

∑m
j=1 βj .‖Vj‖. Since

∀Vj ,∃j1, . . . , jk / U〈[Wj/X]〉
k

= Vj , ‖Vj‖ = ‖U〈[Wj/X]〉
k
‖, which by Lemma 7.3.2, is equal to

‖U‖〈[‖Wj‖/X]〉
k
. So, using rule→E in Vectorial , we obtain ‖Γ‖ `v (‖t‖) ‖r‖ :

∑n
i=1

∑m
j=1 αi×

βj .‖Ti‖〈[Wj/X]〉
k
.

(‖t‖) ‖r‖ = ‖(t) r‖ and
∑n
i=1

∑m
j=1 αi × βj .‖Ti‖〈[Wj/X]〉

k
= ‖
∑n
i=1

∑m
j=1 αi × βj .Ti〈[Wj/X]〉

k
‖.

5.

Γ ` t :

n∑
i=1

αi.Ui X /∈ FV (Γ)

∀I
Γ ` ΛX.t :

n∑
i=1

αi.∀X.Ui

By the induction hypothesis ∃R �
∑n
i=1 αi.Ui such that ‖Γ‖ `v

‖t‖ : ‖R‖. Notice that since the translation does not intro-
duces any type variable, X /∈ FV (‖Γ‖). By Lemma 7.1.2,
R ≡

∑m
j=1 βj .Vj , so by Lemma 7.3.1, ‖R‖ ≡ ‖

∑m
j=1 βj .Vj‖ =∑m

j=1 βj .‖Vj‖. Then, using rule ∀I in Vectorial , we obtain
‖Γ‖ `v ‖t‖ :

∑m
j=1 βj .∀X.‖Vj‖. Note that ‖ΛX.t‖ = ‖t‖,

‖
∑m
j=1 βj .∀X.Vj‖ =

∑m
j=1 βj .∀X.‖Vj‖, and

∑m
j=1 βj .∀X.Vj �∑n

i=1 αi.∀X.Ui.

6.

Γ ` t :

n∑
i=1

αi.∀X.Ui
@I

Γ ` t@(

m∑
j=1

Vj) :

n∑
i=1

αi.(∀X.Ui)@(

m∑
j=1

Vj)

By the induction hypothesis, ∃R �
∑n
i=1 αi.∀X.Ui such that ‖Γ‖ `v ‖t‖ : ‖R‖. Notice that

‖t@(
∑m
j=1 Vj)‖ = ‖t‖. If m > 1, we are done, since ‖

∑n
i=1 αi.(∀X.Ui)@(

∑m
j=1 Vj)‖ is equal

to ‖
∑n
i=1 αi.∀X.Ui‖. On the other hand, if m = 1, then ‖

∑n
i=1 αi.(∀X.Ui)@(V1)‖ is equal to

161

Appendix F. Proofs from Chapter 7

∑n
i=1 αi.‖Ui‖[‖V1‖/X]. By Lemmas 7.1.2 and 7.1.3, R ≡

∑h
k=1 βk.∀X.Wk. Then by Lemma 7.3.1,

‖R‖ ≡
∑h
k=1 βk.∀X.‖Wk‖. So, using rule ∀E in Vectorial , we can derive the following sequent

‖Γ‖ `v ‖t‖ :
∑h
k=1 βk.‖Wk‖[‖V1‖/X] = ‖

∑h
k=1 βk.(∀X.Wk)@V1‖. Since R �

∑n
i=1 αi.∀X.Ui, then∑h

k=1 βk.∀X.Wk �
∑n
i=1 αi.∀X.Ui, and so we have

∑h
k=1 βk.(∀X.Wk)@V1 �

∑n
i=1 αi.(∀X.Ui)@V1.

7.
Γ ` t :T

sI
Γ ` α.t :α.T

By the induction hypothesis, ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖. Then by rule
sI in Vectorial , ‖Γ‖ `v α.‖t‖ :α.‖R‖. Notice that ‖α.t‖ = α.‖t‖, α.R � α.T and
‖α.R‖ = α.‖R‖.

8.
Γ ` t :T Γ ` r :R

+I
Γ ` t + r :T +R

By the induction hypothesis, ∃T ′ � T and R′ � R such that ‖Γ‖ `v
‖t‖ : ‖T ′‖ and ‖Γ‖ `v ‖r‖ : ‖R′‖. Then by rule +I in Vectorial , ‖Γ‖ `v
‖t‖+ ‖r‖ : ‖T ′‖+ ‖R′‖. Notice that ‖t + r‖ = ‖t‖+ ‖r‖, ‖T ′ +R′‖ =
‖T ′‖+ ‖R′‖ and T ′ +R′ � T +R.

9.
Γ ` t :T T � R

�
Γ ` t :R

Then by the induction hypothesis ∃S � T such that ‖Γ‖ `v ‖t‖ : ‖S‖.
Notice that S � T � R.

�

F.7 Proof of Theorem 7.3.6
Theorem 7.3.6 (Strong normalisation). If Γ ` t :T is derivable in Lineal , then t is strongly normalising.

Proof. Let Γ ` t :T , then by Lemma 7.3.5, ∃R � T such that ‖Γ‖ `v ‖t‖ : ‖R‖, and so by Theorem 5.4.4,
‖t‖ is strongly normalising. Assume t is not strongly normalising, say t → t1 → t2 · · · . Then by
Lemma 7.3.4, ‖t‖ →=

v ‖t1‖ →=
v ‖t2‖ →=

v · · · . Since ‖t‖ is strongly normalising, there exists n such that
∀i ≥ n, ‖ti‖ = ‖ti+1‖. By Lemma 7.3.4 it means that ∀i ≥ n, the reduction ti → ti+1 can be only one of
the type application beta-reduction, the type-distributivity rule or the type linearity rules. We define a
positive measure on terms and show that these rules are strictly decreasing with respect to the measure,
so t has to be strongly normalising.

Consider the following measure:

|x : U | = |0| = |λx : U.t| = 1 |t + r| = 2 + |t|+ |r|
|(t) r| = |t|+ |r| |ΛX.t| = |t|
|α.t| = 1 + |t| |t@(

∑n
i=1 Ui)| = 1 + 2|t|

Notice that |t[U/X]| = |t|, since the measure does not depend on the free variables. We proceed by
checking case by case to show that the mentioned rules are strictly decreasing on this measure.

1. |(ΛX.t)@U | = 1 + 2|ΛX.t| = 1 + 2|t| > |t| = |t[U/X]|.

2. |(α.t)@(
∑n
i=1 Ui)| = 1+2|α.t| = 1+2(1+|t|) = 3+2|t| > 2+2|t| = 1+1+2|t| = 1+|t@(

∑n
i=1 Ui)| =

|α.t@(
∑n
i=1 Ui)|

3. |(t + r)@(
∑n
i=1 Ui)| = 1 + 2|t + r| = 5 + 2|t| + 2|r| > 4 + 2|t| + 2|r| = 2 + 1 + 2|t| + 1 + 2|r| =

2 + |t@(
∑n
i=1 Ui)|+ |r@(

∑n
i=1 Ui)| = |t@(

∑n
i=1 Ui) + r@(

∑n
i=1 Ui)|.

4. |((〈ΛX〉
k
.〈λx : U〉n .t)@〈

∑m
i=1Wi〉k) 〈b〉n | = 1 + 2|〈λx : U〉n .t| + n = 1 + 2 + n = 3 + n > 1 + n =

|〈λx : V 〉n .t〈[Wj/X]〉
k
|+ n = |(〈λx : V 〉n .t〈[Wj/X]〉

k
) 〈b〉n |.

�

162

Appendix G

Proofs from Chapter 8

G.1 Proof of Theorem 8.2.3
Theorem 8.2.3 (No-cloning of scalars). @Πn such that ∀α,C(Πn(Γ ` α.U)) = ∆ ` (δ × αs + γ).V with
δ 6= 0 and γ constants in S, s ∈ N>1 and U, V constants in U .

Notice that α is a member of a ring and s is a natural number, so αs is just the multiplication of α
by itself s times.

Proof. Induction over n.

Basic case. n = 0. Trivial, as Π0(Γ ` α.U) = Γ ` α.U for all Π.

Inductive cases.

• Πn(Γ ` α.U) =
Πn−1(Γ ` α.U)

R
P

Assume P = ∆ ` (δ×αs+γ).V and let us do an analysis case by case on the possible rules R:
1. R =→ I[W]. Because the denominator must be unit, ∀α, δ × αs + γ = 1, which is a

contradiction.
2. R = ∀E[X := W]. Then (δ × αs + γ).V = T [X/W], and C(Πn−1(Γ ` α.U)) = ∀X.T . By

Lemma 3.2.2, ∃Z ∈ U , β ∈ S such that T ≡ β.Z, so by Lemma 3.2.3, δ × αs + γ = β,
then C(Πn−1(Γ ` α.U)) = ∀X.β.Z = ∀X.(δ × αs + γ).Z ≡ (δ × αs + γ).∀X.Z, which is a
contradiction by the induction hypothesis.

3. R = ∀I[X]. Then (δ × αs + γ).V ≡ ∀X.T . Analogous to 2.
4. R = sI[β]. Then δ × αs + γ.V ≡ β.T . By Lemma 3.2.2, T ≡ σ.W , then by Lemma 3.2.3,
δ × αs + γ = β × σ. Notice that β cannot depend on α as the rule is constant, so it must
be σ depending on αs, which is a contradiction by the induction hypothesis.

• Πn(Γ ` α.U) =
Πk(Γ ` α.U) πh

R
P

Assume P = ∆ ` (δ×αs+γ).V and let us do an analysis case by case on the possible rules R:
1. R =→ E. Then C(πh) = ∆ ` β.W and C(Πk(Γ ` α.U)) = ∆ ` φ.W → σ.V where
∀α, β × φ× σ = δ × αs + γ. β cannot depend on α, as πh is constant, so:
– Assume φ depend on α, and σ do not, then it depend linearly on α by the induction

hypothesis.
– Assume σ depend on α, then there are two possibilities:
(a) U is an arrow with the last term of the arrow being σ.V , which is a contradiction

as σ depend on α and U is fixed.
(b) The arrow is set up through the derivation, so at some point we must had to use
→ I rule in the following way

Θ, Z ` σ.V
→ I

Θ ` Z → σV

163

Appendix G. Proofs from Chapter 8

so by the induction hypothesis σ depends linearly on α. Once we reach this point,
the only possibility to add something depending on α and multiplying the whole
type is with sI[α] as it cannot come from any other branch (all other branches are
constants). However, it is not possible either, as all the rules must to be constants.

2. R = +I. Then C(Πk(Γ ` α.U)) = ∆ ` σ.V and C(πh) = ∆ ` φ.V where σ+φ = δ×α2+γ.
So, as φ is constant, σ = δ×α2+γ−φ, which is a contradiction by the induction hypothesis.

• Πn(Γ ` α.U) =
πk Πh(Γ ` α.U)

R
P

Assume P = ∆ ` (δ×αs+γ).V and let us do an analysis case by case on the possible rules R:

1. R =→ E. Then C(πk) = ∆ ` φ.W → σ.V and C(Πh(Γ ` α.U)) = β.W where β×φ×σ =
δ × αs + γ.
Notice that nor φ nor σ can depend on α, so the only possibility is to β to depend on αs,
which is a contradiction by the induction hypothesis.

2. R = +I. Analogous 2 of the previous case.
�

164

Bibliography

T. Altenkirch and J. J. Grattage. A functional quantum programming language. In Proceedings of
LICS-2005, pages 249–258. IEEE Computer Society, 2005.

P. Arrighi and A. Díaz-Caro. A system F accounting for scalars. Preprint at arXiv:0903.3741, Apr. 2011a.

P. Arrighi and A. Díaz-Caro. Scalar system F for linear-algebraic λ-calculus: Towards a quantum physical
logic. In B. Coecke, P. Panangaden, and P. Selinger, editors, Proceedings of QPL-2009, volume 270/2
of Electronic Notes in Theoretical Computer Science, pages 219–229. Elsevier, 2011b.

P. Arrighi and G. Dowek. A computational definition of the notion of vectorial space. In N. Martí-Oliet,
editor, Proceedings of WRLA-2004, volume 117 of Electronic Notes in Theoretical Computer Science,
pages 249–261. Elsevier, 2004.

P. Arrighi and G. Dowek. Linear-algebraic lambda-calculus: higher-order, encodings, and confluence. In
A. Voronkov, editor, Proceedings of RTA-2008, volume 5117 of Lecture Notes in Computer Science,
pages 17–31. Springer, 2008.

P. Arrighi, A. Díaz-Caro, M. Gadella, and J. J. Grattage. Measurements and confluence in quantum
lambda calculi with explicit qubits. In B. Coecke, I. Mackie, P. Panangaden, and P. Selinger, editors,
Proceedings of QPL/DCM-2008, volume 270/1 of Electronic Notes in Theoretical Computer Science,
pages 59–74. Elsevier, 2011a.

P. Arrighi, A. Díaz-Caro, and B. Valiron. A type system for the vectorial aspects of the linear-
algebraic lambda-calculus. In Proceedings of the 7th International Workshop on Developments of
Computational Methods (DCM 2011), Zurich, Switzerland, 2011b. To appear in EPTCS. Draft at
http://membres-liglab.imag.fr/diazcaro/vectorial.pdf.

A. Assaf and S. Perdrix. Completeness of algebraic CPS simulations. In Proceedings of the 7th Interna-
tional Workshop on Developments of Computational Methods (DCM 2011), Zurich, Switzerland, 2011.
To appear in EPTCS. Draft at http://membres-lig.imag.fr/perdrix/publi/cps-completeness.
pdf.

H. P. Barendregt. Lambda calculi with types, volume II of Handbook of logic in computer science. Oxford
University Press, 1992.

G. Boudol. Lambda-calculi for (strict) parallel functions. Information and Computation, 108(1):51–127,
1994.

O. Bournez and M. Hoyrup. Rewriting logic and probabilities. In R. Nieuwenhuis, editor, Proceedings of
RTA-2003, volume 2706 of Lecture Notes in Computer Science, pages 61–75. Springer, 2003.

P. Buiras, A. Díaz-Caro, and M. Jaskelioff. Confluence via strong normalisation in an algebraic λ-
calculus with rewriting. In Proceedings of the 6th Workshop on Logical and Semantic Frameworks,
with Applications (LSFA 2011), Belo Horizonte, Brazil, 2011. To appear in EPTCS. Draft at http:
//membres-liglab.imag.fr/diazcaro/CA.pdf.

A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58
(2):345–363, 1936.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68, 1940.

165

http://membres-liglab.imag.fr/diazcaro/vectorial.pdf
http://membres-lig.imag.fr/perdrix/publi/cps-completeness.pdf
http://membres-lig.imag.fr/perdrix/publi/cps-completeness.pdf
http://membres-liglab.imag.fr/diazcaro/CA.pdf
http://membres-liglab.imag.fr/diazcaro/CA.pdf

Coq Dev. Team. The Coq proof assistant reference manual. INRIA, 8.2 edition, Feb. 2009.

U. de’Liguoro and A. Piperno. Non deterministic extensions of untyped λ-calculus. Information and
Computation, 122(2):149–177, 1995.

R. Di Cosmo. Isomorphisms of Types: From Lambda-Calculus to Information Retrieval and Language
Design. Birkhauser Boston, 1995.

A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic λ-calculus and quantitative program analysis.
Journal of Logic and Computation, 15(2):159–179, 2005.

A. Díaz-Caro. Agregando medición al cálculo de van tonder. Master’s thesis, Universidad Nacional de
Rosario, Argentina, Dec. 21, 2007.

A. Díaz-Caro and B. Petit. Sums in linear algebraic lambda-calculus. Preprint at arXiv:1011.3542,
Nov. 2010.

A. Díaz-Caro, S. Perdrix, C. Tasson, and B. Valiron. Equivalence of algebraic λ-calculi. In Informal
proceedings of HOR-2010, pages 6–11, Edinburgh, UK, July 14, 2010.

A. Díaz-Caro, S. Perdrix, C. Tasson, and B. Valiron. Call by value, call by name and the vectorial
behaviour of algebraic λ-calculus. Preprint at arXiv:1005.2897, June 2011.

D. J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Information and Compu-
tation, 101(2):251–267, 1992.

T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in Computer Science,
12(5):579–623, 2003.

T. Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–646, 2005.

T. Ehrhard. A finiteness structure on resource terms. In Proceedings of LICS-2010, pages 402–410. IEEE
Computer Society, 2010.

T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical Computer Science, 309(1):1–41,
2003.

M. J. Fischer. Lambda calculus schemata. In Proceedings of ACM conference on Proving assertions about
programs, pages 104–109. ACM, 1972.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans l’arith-métique d’ordre
supérieure. PhD thesis, Université Paris Diderot, Paris, France, 1972.

J.-Y. Girard. Linear logic. Theoretical Compututer Science, 50:1–102, 1987.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989.

O. M. Herescu and C. Palamidessi. Probabilistic asynchronous π-calculus. In J. Tiuryn, editor, Proceed-
ings of FOSSACS-2000, volume 1784 of Lecture Notes in Computer Science, pages 146–160. Springer,
2000.

G. Jaeger. Quantum information: An overview. Springer, 2007.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal
on Compututing, 15(4):1155–1194, 1986.

J.-L. Krivine. Lambda-calcul: types et modèles. Études et recherches en informatique. Masson, 1990.

M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press., 2000.

M. Pagani and S. R. D. Rocca. Solvability in resource lambda calculus. In L. Ong, editor, Proceedings of
FOSSACS-2010, volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer, 2010.

166

M. Pagani and P. Tranquilli. Parallel reduction in resource lambda-calculus. In Z. Hu, editor, Proceedings
of APLAS-2009, volume 5904 of Lecture Notes in Computer Science, pages 226–242. Springer, 2009.

B. Petit. A polymorphic type system for the lambda-calculus with constructors. In P.-L. Curien, edi-
tor, Proceedings of TLCA-2009, volume 5608 of Lecture Notes in Computer Science, pages 234–248.
Springer, 2009.

G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1(2):
125–159, 1975.

J. C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Programming Symposium:
Proceedings of the Colloque sur la Programmation, volume 19 of Lecture Notes in Computer Science,
pages 408–425. Springer, 1974.

A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transactions on Programming Languages
and Systems, 19(6):916–941, 1997.

M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of Studies in
Logic and the Foundations of Mathematics. Elsevier, 2006.

W. W. Tait. Intensional interpretations of functionals of finite type I. The Journal of Symbolic Logic, 32
(2):198–212, 1967.

C. Tasson. Algebraic totality, towards completeness. In P.-L. Curien, editor, Proceedings of TLCA-2009,
volume 5608 of Lecture Notes in Computer Science, pages 325–340. Springer, 2009.

TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

B. Valiron. Semantics of a typed algebraic lambda-calculus. In S. B. Cooper, P. Panangaden, and
E. Kashefi, editors, Proceedings DCM-2010, volume 26 of Electronic Proceedings in Theoretical Com-
puter Science, pages 147–158. Open Publishing Association, 2010.

B. Valiron. Coq proof. http://www.monoidal.net/vectorial-alglin-coqproof-v2.tgz, 2011a.

B. Valiron. Coq proof. http://www.monoidal.net/vectorial-lvec-coqproof.tar.bz2, 2011b.

A. van Tonder. A lambda calculus for quantum computation. SIAM Journal of Computing, 33:1109–1135,
2004.

L. Vaux. On linear combinations of lambda-terms. In F. Baader, editor, Proceedings of RTA-2007, volume
4533 of Lecture Notes in Computer Science, pages 374–388. Springer, 2007.

L. Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science, 19(5):1029–1059,
2009.

W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803, 1982.

167

http://www.monoidal.net/vectorial-alglin-coqproof-v2.tgz
http://www.monoidal.net/vectorial-lvec-coqproof.tar.bz2

168

Résumé

L’objectif de cette thèse est de développer une théorie de types pour le λ-calcul linéaire-
algébrique, une extension du λ-calcul motivé par l’informatique quantique. Cette exten-
sion algébrique comprend tous les termes du λ-calcul plus leurs combinaisons linéaires,

donc si t et r sont des termes, α.t + β.r est aussi un terme, avec α et β des scalaires pris
dans un anneau. L’idée principale et le défi de cette thèse était d’introduire un système
de types où les types, de la même façon que les termes, constituent un espace vectoriel,
permettant la mise en évidence de la structure de la forme normale d’un terme. Cette thèse
présente le système Lineal , ainsi que trois systèmes intermédiaires, également intéressants
en eux-même : Scalar , Additive et λCA, chacun avec leurs preuves de préservation de type et
de normalisation forte.

Abstract

The objective of this thesis is to develop a type theory for the linear-algebraic λ-calculus,
an extension of λ-calculus motivated by quantum computing. This algebraic extension
encompasses all the terms of λ-calculus together with their linear combinations, so if

t and r are two terms, so is α.t + β.r, with α and β being scalars from a given ring. The
key idea and challenge of this thesis was to introduce a type system where the types, in
the same way as the terms, form a vectorial space, providing the information about the
structure of the normal form of the terms. This thesis presents the system Lineal , and also
three intermediate systems, however interesting by themselves: Scalar , Additive and λCA, all
of them with their subject reduction and strong normalisation proofs.

	Introduction
	A brief and fast introduction to the quantum notation
	The linear-algebraic lambda-calculus
	Some technical remarks about the linear-algebraic lambda-calculus
	Encoding quantum computation in Lineal

	Plan of the thesis

	Call-by-name, call-by-base and the reduction/equality duality
	Algebraic lambda-calculi
	Discussion on consistency and confluence
	Local confluence
	Simulations and the confluence issue

	Simulations
	Algebraic reduction versus algebraic equality
	Call-by-name simulates call-by-base
	Call-by-base simulates call-by-name
	The remaining simulations

	Conclusion and open questions

	A type system accounting for scalars
	The Scalar Type System
	Subject reduction
	Preliminary lemmas
	Subject reduction proof

	Strong normalisation, simplified reduction rules and confluence
	Barycentric lambda-calculus
	Conclusion and open questions

	Introducing sums of types
	The Additive Type System for LambdaAdd
	Subject reduction
	Logical Interpretation
	Structured additive type system
	System F with pairs
	Translation from AddStruct to System Fp
	Type equivalence
	Interpretation of reduction, strong normalisation and confluence

	Conclusions and open questions

	A vectorial type system
	Non-restricted Lineal
	The Vectorial Type System
	Types
	Typing Rules

	Subject Reduction
	An Ordering Relation on Types
	Weak Subject Reduction
	Proof of Theorem 5.3.4

	Confluence and Strong Normalisation
	Expressing Matrices and Vectors
	Conclusions and open questions

	Extending sums of types to the complete calculus via lower bounds
	The calculus Complete Additive
	Subject Reduction with lower-bound
	Confluence and Strong Normalisation
	Abstract Interpretation
	Conclusions and open questions

	Lineal: a vectorial type system in Church style
	The calculus Lineal
	Subject reduction
	Strong normalisation
	Example: the Hadamard gate
	Conclusion

	Conclusions and future work
	Summary
	Future directions
	Semantics and Differentiation
	A quantum calculus
	Logics

	Proofs from Chapter 2
	Proof of Lemma 2.2.2
	Proof of Lemma 2.3.5
	Proof of Lemma 2.3.13
	Proof of Lemma 2.3.14
	Proof of Lemma 2.3.15
	Proof of Lemma 2.3.20
	Proof of Lemma 2.3.26
	Proof of Lemma 2.3.27
	COQ proof of Lemma 2.2.1
	Summary of the proof.
	LambdaLin
	LambdaAlg

	Proofs from Chapter 3
	Proof of Lemma 3.2.2
	Proof of Lemma 3.2.6
	Proof of Lemma 3.2.8
	Proof of Lemma 3.2.9
	Proof of Lemma 3.2.10
	Proof of Lemma 3.2.11
	Proof of Lemma 3.2.12
	Proof of Lemma 3.2.13
	Proof of Lemma 3.2.15
	Proof of Lemma 3.2.16
	Proof of Lemma 3.2.17
	Proof of Theorem 3.2.1
	Proof of Lemma 3.3.5
	Proof of Theorem 3.3.7
	Proof of Lemma 3.3.10
	Proof of Corollary 3.3.13(3)
	Proof of Theorem 3.4.3

	Proofs from Chapter 4
	Proof of Lemma 4.2.3
	Proof of Lemma 4.2.4
	Proof of Lemma 4.2.5
	Proof of Lemma 4.2.6
	Proof of Lemma 4.2.7
	Proof of Lemma 4.2.8
	Proof of Theorem 4.2.1
	Proof of Lemma 4.3.4
	Proof of Lemma 4.3.12
	Proof of Theorem 4.3.21
	Proof of Corollary 4.3.22

	Proofs from Chapter 5
	Proof of Lemma 5.3.2
	Proof of Lemma 5.3.5
	Proof of Lemma 5.3.6
	Proof of Lemma 5.3.7
	Proof of Lemma 5.3.8
	Proof of Lemma 5.3.10
	Proof of Lemma 5.3.11
	Proof of Lemma 5.3.12
	Proof of Lemma 5.3.13
	Proof of Corollary 5.3.14
	Proof of Lemma 5.3.15
	Proof of Theorem 5.3.4
	Proof of Lemma 5.4.1
	Proof of Corollary 5.4.2
	Proof of Lemma 5.4.3

	Proofs from Chapter 6
	Proof of Theorem 6.2.2
	Proof of Lemma 6.3.2
	Proof of Lemma 6.3.3
	Proof of Lemma 6.4.1
	Proof of Theorem 6.4.2
	Proof of Lemma 6.4.3

	Proofs from Chapter 7
	Proof of Corollary 7.2.3
	Proof of Theorem 7.2.1
	Proof of Lemma 7.3.1
	Proof of Lemma 7.3.2
	Proof of Lemma 7.3.4
	Proof of Lemma 7.3.5
	Proof of Theorem 7.3.6

	Proofs from Chapter 8
	Proof of Theorem 8.2.3

	Bibliography

